N71-18996 NASA CR-116855 THE JOHNS HOPKINS UNIVERSITY DEPARTMENT OF PHYSICS # CASE FILE COPY TECHNICAL REPORT No. 24 NASA Research Grant NGR 21-001-001 A REPORT ON SOME RESULTS FROM THE NASA 1968 AIRBORNE AURORAL EXPEDITION by K. A. Dick and W. G. Fastie #### TECHNICAL REPORT No. 24 # A REPORT ON SOME RESULTS FROM THE NASA 1968 AIRBORNE AURORAL EXPEDITION by K. A. Dick and W. G. Fastie The Johns Hopkins University Department of Physics Baltimore, Maryland 21218 NASA Research Grant NGR 21-001-001 ^{*}Present address: Kitt Peak National Observatory, Tucson, Arizona 85717 #### Introduction The Johns Hopkins University participated in the 1968 Airborne Auroral Expedition flown aboard NASA's Convair 990 Airborne Laboratory "Galileo." The instrumentation has been described elsewhere (Dick et al., 1970) and consisted of a 5-position filter wheel photometer, having a full field of view of 12°, and a 1-meter Ebert spectrophotometer. The filters used were: N_2 1PG (5,2) 6704 Å; OI 6300 Å, OI 5577 Å; N_2^+ 1NG (0,0) 3914 Å; and N_2 2PG (0,0) 3371 Å. The spectrometer normally scanned a region n\(\lambda\) (12,400 - 14,000 Å), with the capability of isolating second, third, and fourth orders by means of Corning color glass filters. The photometer scanned every 15 seconds. The results of some 124 hours of flying consist of approximately a quarter million photometer readings and thirty thousand spectral scans (each with as many as 400 resolution intervals). The results of those portions of the expedition flown under non-auroral conditions have already been published (Dick et al., 1970). A preliminary survey of the photometer results for the entire expedition was made in order to provide an impression of the total content. This Fig. 1: Summation of 256 spectral scans from Flight 22, slit width 2 mm. The bottom trace has an amplification four times that of the top trace. consisted of taking three successive voltage readings from each filter at 5-minute intervals, averaging, calculating the intensities, and listing. The results are contained in Appendix I. Also included are the ratios of intensities of the first three features to 3914. Further reduction of photometer data has been carried out for selected times in connection with spectrometer data reduction and will be presented separately. Detailed intensities will be made available to any other experimenters who should have need of them. As noted above, the spectrometer could be used with or without order sorting filters. In general, the filters were used only during night-sky and low auroral activity conditions. Appendix II gives the times the various filters were used. (Also included are the spectrometer slit width and photomultiplier tube gain setting.) In order to obtain reasonable signal-to-noise values, it was usually necessary to average a number of scans. This was accomplished by playing the analogue magnetic tape records into our Fabri-Tek signal averager. Figure 1 shows the result of averaging 256 spectral scans early in Flight 22. The slit width was 2 mm. Average 4278 $\overset{0}{A}$ intensity was \sim 1.3 kR. Included as Appendix III is a list of all the spectral features identified. It should be noted that many of the weak features are identifiable only on a very small portion of the total scans taken. #### REFERENCES Broadfoot, A. L. and K. R. Kendall, J. Geophys. Res., <u>73</u>, 426 (1968). Dick, K. A., G. G. Sivjee, and H. M. Crosswhite, Planet. Space Sci., <u>18</u>, 887 (1970). #### APPENDIX I #### PHOTOMETER RESULTS #### Notes: - 1) These numbers were obtained by reading real-time strip-chart records and manual intensity calculations. Thus, they undoubtedly contain some numerical errors, but the overall trends in intensities will still be apparent. All values are in rayleighs, and some cases are quoted to more significant figures than the accuracy warrants. - 2) The following approximations were used in obtaining preliminary calibration values: - a) The 6704 $\mbox{\normalfont{A}}$ band shape was assumed to be "square," with base \sim 50 $\mbox{\normalfont{A}}$ wide. - b) Temperature variations in aircraft cabin had no effect on filter characteristics. - c) The integrated area under each interference filter was 10% higher than the product of peak transmission and half width (full width at half maximum). - d) No correction was made for atmospheric attenuation. - 3) A secondary bandpass in the 3371 filter renders its results questionable; they are not included. - 4) Values listed include night-sky spectral contributions to the intensities of 6300, 5577. - 5) Flights 1, 24, 25, 26, and 27 are not included due to moonlight or non-zenith applications of the photometer. Flights 2, 4, 6, 7, 12, and 13 are not included because of aircraft problems, daylight ferry flights, or instrumental problems. - 6) Filter characteristics: | $\frac{\lambda}{\max}$ | $\frac{\mathrm{T}}{\mathrm{max}}$ | Half-Width | Background Subtracted | |------------------------|-----------------------------------|------------|-----------------------| | 6708 Å | 74 % | 51 R | 57 R* | | 6302 | 46 | 13 | 10 | | 5582 | 54 | 10 | 10 | | 3913 | 47 | 33 | 17 * | ^{*}Somewhat different values were used initially based on the known filter characteristics and the night-sky spectrum of Broadfoot and Kendall (1968). The above values were finally chosen to make the average intensities of 3914 and 6704 equal zero for flights 14 and 15. The actual value will of course change with night sky conditions. For example, the correction is obviously too great for 3914 after 0300 hours in flight 5, and not enough for 6704 during the same flight. FLIGHT 3 | | BRIGHTNESS | IN | RAYLEIGHS | | RATIOS | OF OBSER | VED INTE | NSITIES | |-------------------|---------------------|-------------------|---------------------|-----------------------|----------------------------|----------------------------|----------------------------|-----------------------------| | TIME | 6685 | 6300 | 5577 | 3914 | 6685/
3914 | 6300/
3914 | 5577/
3914 | 5577/
6300 | | 130 | 55 | 76 | 115 | 105 | 0.5238 | 0.7238 | 1.0952 | 1.5132 | | 135 | 4 5 | 60 | 88 | 38 | 1.1842 | 1.5789 | 2.3158 | | | 140 | 68 | 87 | 115 | 49 | 1.3878 | 1.7755 | 2.3469 | 1.3218 | | 145 | 54 | 78 | 96 | 25 | 2.1600 | 3.1200 | 3.8400 | 1.2308 | | 150 | 67 | 100 | 120 | 41 | 1.6341 | 2.4390 | 2.9268 | 1.2000 | | 155 | 52 | 83 | 110 | 32 | 1.6250 | 2.5938 | 3.4375 | 1.3253 | | 200 | 54 | 88 | 115 | 43 | 1.2558 | 2.0465 | 2.6744 | 1.3068 | | 205 | 52 | 89 | 130 | 64 | 0.8125 | 1.3906 | 2.0313 | 1.4607 | | 210 | 54 | 103 | 120 | 83 | 0.6506 | 1.2410 | 1.4458 | 1.1650 | | 215 | 56 | 99 | 135 | 103 | 0.5437 | 0.9612 | 1.3107 | 1.3636 | | 220
225 | 74
660
200 | 120
335
230 | 200
2980
900 | 250
2509
830 | 0.2960
0.2640 | 0.4800 | 0.8000
1.1920 | 1.6667
8.8955 | | 230
235
240 | 180
105 | 215
205 | 720
400 | 660
310 | 0.2410
0.2727
0.3387 | 0.2771
0.3258
0.6613 | 1.0843
1.0909
1.2903 | 3.9130
3.3488
1.9512 | | 245
250
255 | 130
140
0 | 155
160
570 | 500
560
26400 | 480
560
23600 | 0.2708
0.2500 | 0.3229
0.2857
0.0242 | 1.0417
1.0000
1.1186 | 3.2258
3.5000
46.3158 | | 300 | 460 | 225 | 1960 | 2000 | 0.2300 | 0.1125 | 0.9800 | 8.7111 | | 305 | 530 | 250 | 2470 | 2150 | 0.2465 | 0.1163 | 1.1488 | 9.8800 | | 310 | 250 | 340 | 1130 | 920 | 0.2717 | 0.3696 | 1.2283 | 3.3235 | | 315 | 150 | 235 | 615 | 830 | 0.1807 | 0.2831 | 0.7410 | 2.6170 | | 320 | 155 | 180 | 630 | 580 | 0.2672 | 0.3103 | 1.0862 | 3.5000 | | 325 | 120 | 160 | 380 | 320 | 0.3750 | 0.5000 | 1.1875 | 2.3750 | | 330 | 91 | 96 | 185 | 125 | 0.7280 | 0.7680 | 1.4800 | 1.9271 | | 335 | 61 | 50 | 115 | 61 | 1.0000 | 0.8197 | 1.8852 | 2.3000 | | 340 | 63 | 120 | 190 | 117 | 0.5385 | 1.0256 | 1.6239 | 1.5833 | | 345 | 73 | 110 | 180 | 120 | 0.6083 | 0.9167 | 1.5000 | 1.6364 | | 350 | 130 | 180 | 390 | 330 | 0.3939 | 0.5455 | 1.1818 | 2.1667 | | 355 | 185 | 165 | 720 | 720 | 0.2569 | 0.2292 | 1.0000 | 4.3636 | | 400 | 350 | 145 | 1000 | 850 | 0.4118 | 0.1706 | 1.1765 | 6.8966 | | 405 | 890 | 330 | 2250 | 3610 | 0.2465 | 0.0914 | 1.0665 | 11.6667 | | 410 | 490 | 290 | | 2120 | 0.2311 | 0.1368 | 1.0613 | 7.7586 | | 415 | 390 | 245 | | 1020 | 0.3824 | 0.2402 | 1.0784 | 4.4898 | | 420
425 | 480
470 | 270
325 | 2360
2040 | 2390
1660 | 0.2008
0.2831 | | 0.9874 | 8.7407 | | 430
345
440 | 0
760
340 | 0
480
225 | 0
2780
1070 | 0
2890
1260 | 0.2630
0.2698 | 0.1661
0.1786 | 0.9619
0.8492 | 5.7917
4.7556 | | 445 | 530 | 670 | 1160 | 2480 | 0.2137 | 0.2702 | 1.0081 | 3.7313 | | 450 | 335 | 380 | | 1090 | 0.3073 | 0.3486 | 1.0642 | 3.0526 | | 455 | 220 | 265 | | 580 | 0.3793 | 0.4569 | 1.0776 | 2.3585 | | 500 | 3 ² 5 | 310 | 1120 | 970 | 0.3351 | 0.3196 | 1.1546 | 3.6129 | | 505 | 220 | 300 | 570 | 510 | 0.4314 | 0.5882 | 1.1176 | 1.9000 | | 510
515
520 | 440
4100
1520 | 580
760
760 | 18800 | 1250
17600
2940 | 0.3520
0.2330
0.5170 | 0.0432 | 1.0400
1.0682
1.1361 | 2.2414
24.7368
4.3947 | | 525 | 980 | 590 | 5100 | 5400 | 0.1815 | | 0.9444 | | FLIGHT 5 | | BRIGHTNESS | IN | RAYLEIGHS | | RATIOS | OF OBSER | VED INTE | NSITIES | |------------|------------|----------|-----------|----------------|---------------------|----------|----------|------------------| | TIME | 6685 | 6300 | 5577 | 3914 | 6685/ | 6300/ | 5577/ | 5577/ | | FRITE | 3.70 2 | 0,00 | | | 3914 | 3914 | 3914 | 6300 | | 155 | 2 | 52 | 55 | 12 | 0.1667 | | | 1.0577 | | 200 | 5 | 40 | 50 | 55 | 0.0909 | 0.7273 | 0.9091 | 1.2500 | | 205 | 12 | 46 | 75 | 28 | 0.4286 | 1.6429 | 2.6786 | 1.6304 | | 210 | 2 | 18 | 40 | 4 | 0.5000 | | | 2.2222 | | 215 | 1 | 15 | 38 | 6 | 0.1667 | | | 2.5333 | | 220 | 0 | 19 | 33 | 0 | | | | 1 0500 | | 225 | 2 | 20 | 37 | -1 | -2.0000 | | | 1.8500 | | 230 | -1 | 18 | 40 | 4 | -0.2500 | | 0 0707 |
2.2222 | | 235 | 32 | 99 | | 77 | 0.4156 | 1.2857 | 2.2727 | 1.7677 | | 240 | 24 | 69 | | 70 | 0.3429 | 0.9857 | 2.0714 | 2.1014 | | 245 | 3 | 38 | 50 | 4 | 0.7500 | | | 1.3158 | | 250 | 3 | 25 | | 3 | 1.0000 | | | 1.8400
2.4500 | | 255 | 2 | 20 | | 2 | 1.0000 | | | 2.2083 | | 300 | 6 | 24 | | 1 | 6.0000 | | | 2.1429 | | 305 | 4 | 21 | | -1 | -4.0000 | | | 2.8500 | | 310 | 10 | 20 | | 2 | -5.0000 | | | 2.8500 | | 315 | | 20 | | - 3 | -3.3333 | | | 3.0000 | | 320 | | 20 | | -2 | -6.0000
-13.0000 | | | 2.7000 | | 325 | | 20 | | -1
-5 | -3.2000 | | | 3.4706 | | 330 | | 17 | | - 3 | -6.0000 | | | 2.5217 | | 335 | | 23 | | - 5
- 4 | -5.5000 | | | 2.9545 | | 340 | | 22 | | -8 | -1.0000 | | | 2.6316 | | 345 | | 19
13 | | - 9 | -1.4444 | | | 3.8462 | | 350 | | 23 | | - 7 | -5.4286 | | | 2.6087 | | 355
400 | | 30 | | -8 | -7.6250 | | | 2.4333 | | 405 | | 30 | | -6 | -10.3333 | | | 2.3333 | | 410 | | 28 | | - 9 | -6.7778 | | | 2.2500 | | 415 | | 26 | | -8 | -7.6250 | | | 2.3846 | | 420 | | 29 | | -8 | -8.2500 | | | 2.1379 | | 425 | | 31 | | -8 | -8.8750 | | | 1.9355 | | 430 | | 32 | | -6 | -14.3333 | | | 2.0000 | | 435 | | 34 | | -7 | -12.0000 | | | 2.0294 | | 440 | | 33 | | -8 | -9.8750 | | | 2.0606 | | 445 | | 34 | | -16 | -6.2500 | | | 2.0882 | | 450 | | 23 | | -16 | -4.9375 | | | 2.9565 | | 455 | | 23 | | -16 | -4.9375 | | | 2.9565 | | 500 | | 28 | | -16 | -5.1875 | | | 2.5357 | FLIGHT 8 | | BRIGHTNESS | IN | RAYLEIGHS | | RATIOS | OF OBSER | VED INTE | INSITIES | |------|------------|------|-----------|------|----------|----------|----------|----------| | TIME | 6685 | 6300 | 5577 | 3914 | 6685/ | 6300/ | 5577/ | 5577/ | | | | | | | 3914 | 3914 | 3914 | 6300 | | 420 | 1270 | 300 | 3390 | 3750 | 0.3387 | 0.0800 | 0.9040 | 11.3000 | | 425 | 1000 | 560 | 3510 | 4190 | C • 2387 | 0.1337 | 0.8377 | 6.2679 | | 430 | 65 | 57 | 107 | 150 | 0.4333 | 0.3800 | 0.7133 | 1.8772 | | 435 | 68 | 61 | 92 | 120 | 0.5667 | 0.5083 | 0.7667 | 1.5082 | | 440 | 85 | 86 | 140 | 107 | 0.7944 | 0.8037 | 1.3084 | 1.6279 | | 445 | 65 | 97 | 130 | 140 | 0.4643 | 0.6929 | 0.9286 | 1.3402 | | 450 | 77 | 96 | 145 | 230 | 0.3348 | 0.4174 | 0.6304 | 1.5104 | | 455 | 66 | 82 | 135 | 205 | 0.3220 | 0.4000 | 0.6585 | 1.6463 | | 500 | 71 | 86 | 165 | 370 | 0.1919 | 0.2324 | 0.4459 | 1.9186 | | 505 | 125 | 155 | 370 | C | | | | | | 510 | 112 | 105 | 315 | 830 | 0.1349 | 0.1265 | 0.3795 | 3.0000 | | 515 | 130 | 115 | 400 | 1100 | 0.1182 | 0.1045 | 0.3636 | 3.4783 | | 520 | 130 | 135 | 400 | 1040 | 0.1250 | 0.1298 | 0.3846 | 2.9630 | | 525 | - O | 0 | 0 | 0 | | | | | | 530 | O | 0 | 0 | 0 | | | | | | 535 | 660 | 355 | 2410 | 3260 | 0.2025 | 0.1089 | 0.7393 | 6.7887 | | 540 | 275 | 285 | 835 | 1900 | 0.1447 | 0.1500 | 0.4395 | 2.9298 | | 545 | 520 | 370 | 1820 | 2670 | 0.1948 | 0.1386 | 0.6816 | 4.9189 | | 550 | 980 | 540 | 3990 | 5090 | 0.1925 | 0.1061 | 0.7839 | 7.3889 | | 555 | 640 | 400 | 2090 | 2810 | 0.2278 | 0.1423 | 0.7438 | 5.2250 | | 600 | 650 | 370 | 2430 | 2670 | 0.2434 | 0.1386 | 0.9101 | 6.5676 | | 605 | 9800 | 2880 | 6980 | 9110 | 1.0757 | 0.3161 | 0.7662 | 2.4236 | | 610 | 430 | 290 | 1540 | 2090 | 0.2057 | 0.1388 | 0.7368 | 5.3103 | | 615 | 300 | 265 | 1070 | 1410 | 0.2128 | 0.1879 | 0.7589 | 4.0377 | | 620 | 1410 | 1220 | 3870 | 5100 | 0.2765 | 0.2392 | 0.7588 | 3.1721 | | 625 | 440 | 265 | 1200 | 1730 | 0.2543 | 0.1532 | 0.6936 | 4.5283 | | 630 | 39 | 365 | 275 | 330 | 0.1182 | 1.1061 | 0.8333 | 0.7534 | | 635 | 380 | 260 | 960 | 1040 | 0.3654 | 0.2500 | 0.9231 | 3.6923 | | 640 | 220 | 240 | 690 | 790 | U.2785 | 0.3038 | 0.8734 | 2.8750 | | 645 | 210 | 210 | 660 | 720 | 0.2917 | 0.2917 | 0.9167 | 3.1429 | | 650 | 540 | 375 | 550 | 490 | 1.1020 | 0.7653 | 1.1224 | 1.4667 | | 655 | 160 | 165 | 430 | 500 | 0.3200 | 0.3300 | 0.8600 | 2.6061 | | | BRIGHTNESS | IN | RAYLEIGHS | | RATIOS | OF OBSER | VED INTE | NSITIES | |---|---|--|---|---|--|--|--|--| | TIME | 6685 | 6300 | 5577 | 3914 | 6685/
3914 | 6300/
3914 | 5577/
3914 | 5577/
6300 | | 340
345
350
355
400
405
410 | 112
120
130
135
135
130
125 | 82
87
113
120
140
97 | 340
370
465
415
510
420
400 | 220
260
295
260
340
240
260 | 0.5091
0.4615
0.4407
0.5192
0.3971
0.5417
0.4808 | 0.3727
0.3346
0.3831
0.4615
0.4118
0.4042
0.3808 | 1.5455
1.4231
1.5763
1.5962
1.5000
1.7500
1.5385 | 4.1463
4.2529
4.1150
3.4583
3.6429
4.3299
4.0404 | | 415
420
425
430
435 | 125
135
98
135
150 | 82
113
110
140
155 | 355
415
325
485
320
510 | 230
280
215
230
260 | 0.5435
0.4821
0.4558
0.5870
0.5769 | 0.3565
0.4036
0.5116
0.6087
0.5962 | 1.5435
1.4821
1.5116
2.1087
1.2308 | 4.3293
3.6726
2.9545
3.4643
2.0645 | | 440
445
450
455
500 | 260
60
50
49
57
40 | 440
102
76
75
96
88 | 150
150
135
135
118 | 785
190
200
170
240
135 | 0.3312
0.3158
0.2500
0.2882
0.2375
0.2963 | 0.5605
0.5368
0.3800
0.4412
0.4000
0.6519 | 0.6497
0.7895
0.7500
0.7941
0.5625
0.8741 | 1.1591
1.4706
1.9737
1.8000
1.4063
1.3409 | | 510
515
520
525
530
535 | 36
39
39
48
54
62 | 87
105
100
105
130
160 | 106
155
125
160
180
215 | 130
200
140
210
180
225 | 0.2769
0.1950
0.2786
0.2286
0.3000
0.2756 | 0.6692
0.5250
0.7143
0.5000
0.7222
0.7111 | 0.8154
0.7750
0.8929
0.7619
1.0000
0.9556 | 1.2184
1.4762
1.2500
1.5238
1.3846
1.3438 | | 540
545
550
555
600 | 97
210
185
0
0 | 240
475
540
0 | 385
810
820
0 | 385
610
565
0
0 | 0.2519
0.3443
0.3274 | 0.6234
0.7787
0.9558 | 1.0000
1.3279
1.4513 | 1.6042
1.7053
1.5185 | | 605
610
615
620
625
630 | 0
1240
740
665
560
500 | 0
505
340
315
250
430 | 4830
2900
2960
1980
2590 | 0
4930
3320
3130
2210
1520 | 0.2515
0.2229
0.2125
0.2534
0.3289 | 0.1024
0.1024
0.1006
0.1131
0.2829 | 0.9797
0.8735
0.9457
0.8959
1.7039 | 9.5644
8.5294
9.3968
7.9200
6.0233 | | 635
640
645
650
655
700 | 780 | 300
410
285
410
450
400 | 2180
970
1900
3500 | 1850
2590
1740
1960
2900
1520 | 0.1892
0.1853
0.1293
0.2806
0.2690
0.1908 | 0.1622
0.1583
0.1638
0.2092
0.1552
0.2632 | 0.7730
0.8417
0.5575
0.9694
1.2069
1.5461 | 4.7667
5.3171
3.4035
4.6341
7.7778
5.8750 | | 705
710
715
720
725
730 | 250
265
560
295 | 290
240
255
380
300
350 | 1000
1020
1910
1040 | 1300
990
950
1490
950
880 | 0.2462
0.2525
0.2789
0.3758
0.3105
0.4148 | 0.2231
0.2424
0.2684
0.2550
0.3158
0.3977 | 1.0154
1.0101
1.0737
1.2819
1.0947
1.2159 | 4.5517
4.1667
4.0000
5.0263
3.4667
3.0571 | FLIGHT 10 | | BRIGHTNESS | IN | RAYLEIGHS | | RATIOS | OF OBSER | RVED INTE | NSITIES | |--------------------------|----------------------|-----------------------|-----------------------|----------------------|---------------------------------------|----------------------------|----------------------------|--------------------------------------| | TIME | 6685 | 6300 | 5577 | 3914 | 6685/
3914 | 6300/
3914 | 5577/
3914 | 5577/
6300 | | 555
600
605 | 135
53
53 | 180
125
59 | 710
200
120 | 64
37
19 | 2.1094
1.4324
2.7895 | 2.8125
3.3784 | 11.0938 | 3.9444
1.6000
2.0339 | | 610
615
620 | 55
69
63 | 46
50
44 | 128
135
95 | 26
14
20 | 2.1154
4.9286
3.1500 | 1.7692 | 4.9231 | 2.7826
2.7000
2.1591 | | 625
630
635 | 62
69
52 | 95
69
50 | 100
100
78 | 19
20
13 | 3.2632
3.4500
4.0000 | | | 1.0526
1.4493
1.5600 | | 640
645
650
655 | 63
49
57
58 | 85
54
49
48 | 105
78
73
70 | 24
30
27
11 | 2.6250
1.6333
2.1111
5.2727 | 3.5417
1.8000
1.8148 | 4.3750
2.6000
2.7037 | 1.2353
1.4444
1.4898
1.4583 | | 700
705
710 | 61
52
57 | 47
50
52 | 75
69
81 | 12
16
8 | 5.0833
3.2500
7.1250 | | | 1.5957
1.3800
1.5577 | | 715
720
725 | 67
55
46 | 55
55
56 | 90
76
67 | 21
19
5 | 3.1905
2.8947
9.2000 | 2.6190 | 4.2857 | 1.6364
1.3818
1.1964 | | 730
735
740 | 45
45
42 | 45
54
52 | 67
75
72 | 8
9
12 | 5.6250
5.0000
3.5000 | | | 1.4889
1.3889
1.3846 | | 745
750
755
800 | 47
41
40
42 | 37
36
36
26 | 54
44
48
60 | 11
11
3
7 | 4.2727
3.7273
13.3333
6.0000 | | | 1.4595
1.2222
1.3333
2.3077 | | 805
810
815 | 46
45
46 | 32
33
37 | 4 4
4 7 | 9
8
19 | 5.1111
5.6250
2.4211 | | | 1.3750
1.4242
1.3784 | | 820
825
830 | 45
53
52 | 32
48
51 | | 11
12
15 | 4.0909
4.4167
3.4667 | | | 1.5625
1.3333
1.1569 | | 835
840
845 | 55
52
54 | 40
36
52 | 56 | 12
8
7
| 4.5833
6.5000
7.7143 | | | 1.4250
1.5833
1.0769 | | 850
855
900
905 | 52
85
44
44 | 46
100
40
41 | | 4
29
9
13 | 13.0000
2.9310
4.8889
3.3846 | 3.4483 | 7.2414 | 1.3913
2.1000
1.4000
1.3902 | | 910
915
920 | 45
42
46 | 32
46
46 | 51
57
64 | 4
4
7 | 11.2500
10.5000
6.5714 | | | 1.5938
1.2391
1.3913 | | 925
930
935 | 63
83
68 | 72
210
120 | 120
250
150 | 17
31
19 | 3.7059
2.6774
3.5789 | 6.7742 | 8.0645 | 1.6667
1.1905
1.2500 | | 940
945
950 | 81
74
63 | 110
110
100 | 145
115 | 17
21
17 | 4.7647
3.5238
3.7059 | 5.2381 | 6.9048 | 1.5455
1.3182
1.1500 | | 955
1000 | 74
85 | 115
120 | | 19
34 | 3.8947
2.5000 | 3.5294 | 6.1765 | 1.0870 | FLIGHT 10 | | BRIGHTNESS | IN | RAYLEIGHS | | RATIOS | OF OBSER | VED INTE | NSITIES | |------|------------|------|-----------|------|---------------|---------------|---------------|---------------| | TIME | 6685 | 6300 | 5577 | 3914 | 6685/
3914 | 6300/
3914 | 5577/
3914 | 5577/
6300 | | 1010 | 72 | 120 | 180 | 25 | 2.8803 | 4.8000 | 7.2000 | 1.5000 | | 1015 | 58 | 83 | 110 | 23 | 2.5217 | 3.6087 | 4.7826 | 1.3253 | | 1020 | 55 | 64 | 97 | 24 | 2.2917 | 2.6667 | 4.0417 | 1.5156 | | 1025 | 49 | 62 | 110 | 24 | 2.0417 | 2.5833 | 4.5833 | 1.7742 | | 1030 | 50 | 81 | 120 | 31 | 1.6129 | 2.6129 | 3.8710 | 1.4815 | | 1035 | 48 | 125 | 155 | 44 | 1.0909 | 2.8409 | 3.5227 | 1.2400 | | 1040 | 56 | 81 | 125 | 28 | 2.0000 | 2.8929 | 4.4643 | 1.5432 | | 1045 | 50 | 81 | 125 | 37 | 1.3514 | 2.1892 | 3.3784 | 1.5432 | | 1050 | 48 | 85 | 140 | 45 | 1.0667 | 1.8889 | 3.1111 | 1.6471 | | 1055 | 47 | 120 | 160 | 57 | 0.8246 | 2.1053 | 2.8070 | 1.3333 | | 1100 | 53 | 89 | 160 | 61 | 0.8689 | 1.4590 | 2.6230 | 1.7978 | | 1105 | 49 | 84 | 180 | 74 | 0.6622 | 1.1351 | 2.4324 | 2.1429 | FLIGHT 11 | | BRIGHTNESS | IN | RAYLEIGHS | | RATIOS | OF OBSER | VED INTE | NSITIES | |--|--|---|---|--|---|--|--|--| | TIME | 6685 | 6300 | 5577 | 3914 | 6685/
3914 | 6300/
3914 | 5577/
3914 | 5577/
6300 | | 715
720
725
730
735
740
745
750 | -12
11
9
5
6
19
21 | 43
61
17
7
15
15
23
27 | 51
100
32
16
15
18
25
37 | 45
82
11
3
-5
-5
4
5 | -0.2667
0.1341
0.8182
1.6667
-1.2000
-3.8000
5.2500
4.2000 | 0.9556
0.7439 | 1.1333
1.2195 | 1.1860
1.6393
1.8824
2.2857
1.0000
1.2000
1.0870
1.3704 | | 755
800
805
810
815
820
825 | 10
11
16
22
15
21
64 | 19
16
15
30
71
105
87 | 43
37
47
59
81
165
340 | 11
17
21
34
69
85
260 | 0.9091
0.6471
0.7619
0.6471
0.2174
0.2471 | 0.7143
0.8824
1.0290
1.2353
0.3346 | 2.2381
1.7353
1.1739
1.9412
1.3077 | 2.2632
2.3125
3.1333
1.9667
1.1408
1.5714
3.9080 | | 830
835
840
845
850
855 | 27
-9
18
81
83
54 | 53
45
44
100
105
63
38 | 100
85
120
500
450
320
145 | .73
52
73
365
290
200
82 | 0.3699
-0.1731
0.2466
0.2219
0.2862
0.2700
0.2317 | 0.7260
0.8654
0.6027
0.2740
0.3621
0.3150
0.4634 | 1.3699
1.6346
1.6438
1.3699
1.5517
1.6000
1.7683 | 1.8868
1.8889
2.7273
5.0000
4.2857
5.0794
3.8158 | | 905
910
915
920
925
930
935 | 11
6
6
7
5
2
-4 | 32
25
20
19
17
16
12 | 91
67
45
54
31
37
23 | 37
19
7
4
8
-4
-8 | 0.2973
0.3158
0.8571
1.7500
0.6250
-0.5000 | 0.8649 | 2.4595 | 2.8438
2.6800
2.2500
2.8421
1.8235
2.3125
1.9167 | | 940
945
950
955
1000
1005
1010 | -4
-1
14
-4
-5
-5
-4
-2 | 14
11
14
13
12
13
16 | 22
23
31
24
23
28
28
29 | -5
-2
4
-3
-3
-1
1 | 0.8000
0.5000
3.5000
1.3333
1.6667
5.0000
-4.0000 | | | 1.5714
2.0909
2.2143
1.8462
1.9167
2.1538
1.7500
1.5263 | | 1020
1025
1030
1035
1040
1045 | -3
1
11
-5
31 | 19
24
33
38
43
42 | 36
45
58
79
150 | 14
18
33
56
105
83 | -0.2143
0.0556
0.3333
-0.0893
0.2952
0.4096 | 1.0000
0.6786
0.4095
0.5060 | 1.7576
1.4107
1.4286
1.8072 | 1.8947
1.8750
1.7576
2.0789
3.4884
3.5714 | | | BRIGHTNESS | IN I | RAYLEIGHS | | RATIOS (| OF OBSER | VED INTER | SITIES | |---|---|----------------------------------|----------------------------------|------------------------------|--|---------------|---------------|--| | TIME | 6685 | 6300 | 5577 | 3914 | 6685/
3914 | 6300/
3914 | 5577/
3914 | 5577/
6300 | | 625
630
635
640
645 | 18
28
6
1 | 34
26
23
14
14 | 85
55
54
34
39 | 20
-1
6
-5
-1 | 0.9000
-28.0000
1.0000
-0.2000
-1.0000 | | | 2.5000
2.1154
2.3478
2.4286
2.7857 | | 650
655
700
705 | 6
3
0
-6 | 18
15
0
19 | 44
41
0
48 | 1
-4
0
0 | 6.0000
-0.7500 | | | 2.4444
2.7333 | | 710
715
720
725 | -6
-5
-6
-7 | 15
15
12
13 | 45
46
52
47 | -2
-1
21
-1 | 3.0000
5.0000
-0.2857
7.0000 | 0.5714 | 2.4762 | 3.0000
3.0667
4.3333
3.6154 | | 730
735
740
745 | -6
-7
0
0 | 14
14
0
13 | 45
46
0
51 | 1
-1
0
-1 | -6.0000
7.0000 | | | 3.2143
3.2857
3.9231 | | 750
755
800
805 | 3
1
1 | 13
13
12
16 | 51
52
53
51 | 1
1
-4
0 | 3.0000
-0.2500 | | | 3.9231
4.0000
4.4167 | | 810
815
820
825 | 0
1
1 | 12
14
14
14 | 50
54
52
50 | -4
-1
0
2 | 0.5000 | | | 4.1667
3.8571
3.5714 | | 830
835
840
845 | -1
0
-2 | 15
13
16
13 | 55
49
50
48 | -1
-4
-1
-1 | -2.0000
0.2500
2.0000 | | | 3.6667
3.7692
3.1250
3.6923 | | 850
855
900
905 | -5
0 | 13
12
14
14 | 46
41
49
62 | -1
-3
-2
0 | 1.0000
1.6667 | | | 3.5385
3.4167
3.5000 | | 910
915
920
925 | 5 -5
-1 | 14
14
14
15 | 63
61
59
62 | 3
1
1
0 | -1.3333
-5.0000
-1.0000 | | | 4.5000
4.3571
4.2143 | | 930
935
940
945 | 5 -3
0 -2
5 -1 | 15
14
14
15
17 | 61
57
61
61
64 | 4
4
1
3
8 | -0.7500
-0.7500
-2.0000
-0.3333 | | | 4.0667
4.0714
4.3571
4.0667
3.7647 | | 955
1000
1005
1010
1015
1020
1025 | 5 -2
6 4
5 2
7 2
5 -2
7 -1 | 13
15
16
15
14
12 | 63
69
65
63
62
61 | 40
11
8
5
6
6 | -0.0500
0.3636
0.2500
0.4000
-0.3333
-0.1667
-0.5000 | 0.3250 | 1.5750 | 4.8462
4.6000
4.0625
4.3333
4.5000
5.1667
4.6923 | | 103 | 2 | 14 | 59 | 3 | 0.6667 | | | 4.2143 | FLIGHT 14 | | BRIGHTNESS | IN | RAYLEIGHS | | RATIOS | OF OBSER | VED INTE | NSITIES | |----------------------|----------------|----------------|----------------|---------------|---------------|---------------|---------------|------------------| | TIME | 6685 | 6300 | 5577 | 3914 | 6685/
3914 | 6300/
3914 | 5577/
3914 | 5577/
6300 | | 1040
1045
1050 | -1
-3
-3 | 12
13
13 | 59
56
53 |)
()
() | | | | | | 1055
1100 | -3
0 | 14
16 | 47
53 | -3
-4 | 1.0000 | | | 3.3571
3.3125 | | | BRIGHTNESS | IN | RAYLEIGHS | | RATIOS | OF OBSER | VED INTE | NSITIES | |------------|----------------|----------|-----------|----------|-------------------|----------|----------|------------------| | TIME | 6685 | 6300 | 5577 | 3914 | 6685/ | 6300/ | 5577/ | 5577/ | | | | | | | 3914 | 3914 | 3914 | 6300 | | 520 | 350 | 100 | 128 | 79 | 4.4304 | 1.2658 | 1.6203 | 1.2800 | | 525 | 56 | 67 | 93 | 37 | 1.5135 | 1.8108 | 2.5135 | 1.3881 | | 530 | 28 | 61 | 80 | 23 | 1.2174 | 2.6522 | 3.4783 | 1.3115 | | 535 | 17 | 58 | 73 | 21 | 0.8095 | 2.7619 | 3.4762 | 1.2586 | | 540 | 18 | 55 | 75 | 19 | 0.9474 | | | 1.3636 | | 545 | 24 | 55 | 71 | 8 | 3.0000 | 4 | | 1.2909 | | 550 | 23 | 50 | 5.5 | 1 | 23.0000 | | | 1.1000 | | 555 | 18 | 47 | 66 | -1 | -18.0000 | | | 1.4043 | | 600
605 | 0
28 | 0
45 | 0
55 | 0
2 | 14.0000 | | | 1.2222 | | 610 | 35 | 34 | 57 | 9 | 3.8889 | | | 1.6765 | | 615 | 35 | 33 | 52 | ź | 5.0000 | | | 1.5758 | | 620 | 31 | 29 | | 4 | 7.7500 | | | 1.7931 | | 625 | 28 | 28 | 54 | 1 | 28.0000 | | | 1.9286 | | 630 | 29 | 28 | 57 | 3 | 9.6667 | | | 2.0357 | | 635 | 14 | 26 | 57 | 1 | 14.0000 | | | 2.1923 | | 640 | 11 | 28 | 65 | 5 | 2.2000 | | | 2.3214 | | 645 | 11 | 28 | 79 | 6 | 1.8333 | | | 2.8214 | | 650 | 11 | 27 | 83 | 3 | 3.6667 | | | 3.0741 | | 655 | 10 | 25 | 81 | 5 | 2.0000 | | | 3.2400 | | 700
705 | 9
7 | 23
22 | 80
72 | 7
6 | 1.2857
1.1667 | | | 3.4783 | | 710 | ó | 0 | 0 | 0 | 1.1001 | | | 3.2727 | | 715 | Õ | ő | ŏ |
0 | | | | | | 720 | ő | Õ | Ö | Ö | | | | | | 725 | -4 | 15 | 50 | -2 | 2.0000 | | | 3.3333 | | 730 | -4 | 13 | | -3 | 1.3333 | | | 3.5385 | | 735 | - 5 | 10 | | -4 | 1.2500 | | | 4.7000 | | 740 | -9 | 11 | 55 | -2 | 4.5000 | | | 5.0000 | | 745 | - 5 | 9 | | -2 | 2.5000 | | | 6.8889 | | 750
755 | -9
-11 | 9
9 | | -2
-1 | 4.5000
11.0000 | | | 6.8889
7.1111 | | 800 | -11
-9 | 9 | | -1
-2 | 4.5000 | | | 7.0000 | | 805 | - Ý | 8 | 59 | -3 | 2.3333 | | | 7.3750 | | 810 | -12 | 9 | 50 | -4 | 3.0000 | | | 5.5556 | | 815 | -12 | 9 | 39 | -5 | 2.4000 | | | 4.3333 | | 820 | -13 | 7 | 38 | -6 | 2.1667 | | | 5.4286 | | 825 | -14 | 8 | 48 | -2 | 7.0000 | | | 6.0000 | | 830 | -15 | 6 | 42 | -5 | 3.0000 | | | 7.0000 | | 835 | -13 | 7 | 41 | -5 | 2.6000 | | | 5.8571 | | 840 | -16 | 5
5 | 37 | -6
-3 | 2.6667 | | | 7.4000 | | 845
850 | -16
-15 | 9
6 | 40
43 | -3
-4 | 5.3333
3.7500 | | | 8.0000
7.1667 | | 855 | -15
-15 | 5 | 50 | -4
-3 | 5.0000 | | | 10.0000 | | 900 | -14 | 5 | 50 | - 1 | 14.0000 | | | 10.0000 | | 905 | -12 | 5 | 65 | î | -12.0000 | | | 13.0000 | | 910 | -10 | 4 | 67 | -3 | 3.3333 | | | 16.7500 | | 915 | -10 | 5 | | 1 | 10.0000 | | | 15.8007 | | 920 | -10 | 6 | | -1 | 10.0000 | | | 12.8333 | | 925 | apair a sa | 6 | 74 | · 3 | 3.6667 | | | 12.3333 | FLIGHT 15 | | BRIGHTNESS | IN | RAYLEIGHS | | RATIOS | OF OBSER | VED INTE | NSITIES | |------|------------|------|-----------|------|----------|----------|----------|---------| | TIME | 6685 | 6300 | 5577 | 3914 | 6685/ | 6300/ | 5577/ | 5577/ | | | | | | | 3914 | 3914 | 3914 | 6300 | | 935 | -10 | 9 | 72 | 1 | -10.0000 | | | 8.0000 | | 940 | -10 | 9 | 70 | 1 | -10.0000 | | | 7.7778 | | 945 | -10 | 8 | 62 | 5 | -2.0000 | | | 7.7500 | | 950 | -7 | 12 | 72 | 11 | -0.6364 | | | 6.0000 | | 955 | -7 | 10 | 67 | 11 | -0.6364 | | | 6.7000 | | 1000 | -7 | 11 | 69 | 20 | -0.3500 | | | 6.2727 | | 1005 | -5 | 21 | 75 | 29 | -0.1724 | 0.7241 | 2.5862 | 3.5714 | | 1010 | 67 | 140 | 320 | 250 | 0.2680 | 0.5600 | 1.2800 | 2.2857 | | 1015 | 140 | 155 | 660 | 560 | 0.2500 | 0.2768 | 1.1786 | 4.2581 | | 1020 | 310 | 175 | 1120 | 1220 | 0.2541 | 0.1434 | 0.9180 | 6.4000 | FLIGHT 16 | | BRIGHTNESS | IN | RAYLEIGHS | | RATIOS | OF OBSER | VED INTE | NSITIES | |--|--|--|---|---|---|--|--|--| | TIME | 6685 | 6300 | 5577 | 3914 | 6685/
3914 | 6300/
3914 | 5577/
3914 | 5577/
6300 | | 910
915
920
925
930
935
940
945
950
955
1000 | 30
39
27
26
28
29
28
35
13
42
50
34 | 62
57
57
31
40
41
40
43
40
75
105 | 150
117
64
41
64
51
48
73
71
100
115 | 160
90
15
-6
1
0
1
0
0 | 0.1875
0.4333
1.8000
-4.3333
28.0000 | 0.3875
0.6333 | 9.9375
1.3000 | 2.4194
2.0526
1.1228
1.3226
1.6000 | | 1010
1015
1020
1025
1030
1035
1040
1045
1050 | 40
56
38
38
0
54
60
53
0 | 62
84
69
68
0
70
89
61
0 | 93
175
110
103
0
120
145
108
0 | 0 0 0 0 0 0 0 0 | | | | | | 1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1215
1210
1215
1220
1225
1230
1235 | 59
66
67
59
56
68
55
58
96
64
67
185
225
495
200
380
830 | 75
71
68
63
66
77
91
96
155
120
123
165
200
135
215
410
285
355 | 115
123
112
113
113
140
130
135
160
295
145
175
150
470
160
180
440
1250
1950 | 78
77
71
77
79
70
160
130
215
305
230
400
380
260
395
615
1030
800
1760
2940 | 0.7564 0.8571 0.9437 0.7662 0.7089 0.9429 0.3625 0.4231 0.2698 0.3148 0.2174 0.1600 0.1763 0.6923 0.3165 0.3659 0.4806 0.2500 0.2159 0.2823 | 0.9615
0.9221
0.9577
0.8182
0.8354
1.1000
0.5437
0.7000
0.4465
0.5082
0.5217
0.3075
0.4342
1.2500
0.5063
0.2195
0.2087
0.5125
0.1619
0.1207 | 1.4744
1.5974
1.5775
1.4675
1.4304
2.0000
0.8125
1.0385
0.7442
0.9672
0.6304
0.4375
0.3947
1.8077
0.4051
0.2927
0.4272
1.5625
1.1080
0.8299 | 1.5333
1.7324
1.6471
1.7937
1.7121
1.8182
1.4943
1.4835
1.6667
1.9032
1.2083
1.4228
0.9091
1.4462
0.8000
1.3333
2.0465
3.0488
6.8421
6.8732 | FLIGHT 17 | | BRIGHTNESS | Brond | RAYLEIGHS | | RATIOS | OF OBSER | RVED INTE | NSITIES | |------|------------|-------|-----------|------|-------------------|----------|---|---------| | TIME | 6685 | 6300 | 5577 | 3914 | 6685/ | 6300/ | 5577/ | 5577/ | | | | | | | 3914 | 3914 | | 6300 | | 155 | 85 | 79 | 305 | 125 | 0.6800 | 0.6320 | 2.4400 | 3.8608 | | 200 | 74 | 82 | 270 | 113 | 0.6549 | 0.7257 | 2.3894 | 3.2927 | | 205 | 83 | 170 | 320 | 145 | 0.5724 | 1.1724 | 2.2069 | 1.8824 | | 210 | 49 | 125 | 155 | 28 | 1.7500 | 4.4643 | 5.5357 | 1.2400 | | 215 | 46 | 102 | 170 | 53 | 0.8679 | 1.9245 | 3.2075 | 1.6667 | | 220 | 37 | 97 | | 28 | 1.3214 | 3.4643 | 5.0000 | 1.4433 | | 225 | 34 | -80 | 135 | 48 | 0.7083 | 1.6667 | 2.8125 | 1.6875 | | 230 | 27 | 75 | 115 | 43 | 0.6279 | 1.7442 | 2.6744 | 1.5333 | | 235 | 30 | 79 | 135 | 38 | 0.7895 | 2.0789 | 3.5526 | 1.7089 | | 240 | 31 | 79 | | 28 | 1.1071 | 2.8214 | 5.0000 | 1.7722 | | 245 | 32 | 78 | 165 | 27 | 1.1852 | 2.8889 | 6.1111 | 2.1154 | | 250 | 37 | 74 | | 40 | 0.9250 | 1.8500 | 4.0000 | 2.1622 | | 255 | 0 | Ö | ő | Ö | 007233 | 2.0000 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | LSIULL | | 300 | 31 | 64 | | 27 | 1.1481 | 2.3704 | 6.1111 | 2.5781 | | 305 | 30 | 51 | 160 | 26 | 1.1538 | 1.9615 | 6.1538 | 3.1373 | | 310 | 30 | 47 | | 26 | 1.1538 | 1.8077 | 5.5769 | 3.0851 | | 315 | 0 | Ö | 0 | C | ## * ## \r | 200,1 | 202107 | 500051 | | 320 | 24 | 46 | 135 | 23 | 1.0435 | 2.0000 | 5.8696 | 2.9348 | | 325 | 37 | 40 | 135 | 32 | 1.1563 | 1.2500 | 4.2188 | 3.3750 | | 330 | 28 | 48 | 140 | 55 | 0.5091 | 0.8727 | 2.5455 | 2.9167 | | 335 | 122 | 190 | 580 | 445 | 0.2742 | 0.4270 | 1.3034 | 3.0526 | | 340 | 97 | 243 | | 285 | 0.3404 | 0.8526 | 1.3684 | 1.6049 | | 345 | 61 | 76 | 340 | 230 | 0.2652 | 0.3304 | 1.4783 | 4.4737 | | 350 | Ō | 0 | Ō | 0 | | | | | | 355 | 63 | 185 | 325 | 380 | 0.1658 | 0.4868 | 0.8553 | 1.7568 | | 400 | 210 | 260 | 900 | 750 | 0.2800 | 0.3467 | 1.2000 | 3.4615 | | 405 | 135 | 260 | 625 | 480 | 0.2813 | 0.5417 | 1.3021 | 2.4038 | | 410 | 210 | 305 | 1030 | 740 | 0.2838 | 0.4122 | 1.3919 | 3.3770 | | 410 | 270 | 305 | | 740 | 0.3649 | 0.4122 | 1.3919 | 3.3770 | | 415 | 235 | 113 | | 1010 | 0.2327 | 0.1119 | 1.1089 | 9.9115 | | 420 | O | 50 | | 125 | | 0.4000 | 1.3600 | 3.4000 | | 425 | 63 | 88 | 230 | 170 | 0.3706 | 0.5176 | 1.3529 | 2.6136 | | 430 | 63 | 109 | 315 | 250 | 0.2520 | 0.4360 | 1.2600 | 2.8899 | | 435 | 49 | 100 | 245 | 105 | 0.4667 | 0.9524 | 2.3333 | 2.4500 | | 440 | 61 | 150 | 290 | 180 | 0.3389 | 0.8333 | 1.6111 | 1.9333 | | 445 | 48 | 113 | 245 | 140 | 0.3429 | 0.8071 | 1.7500 | 2.1681 | | 450 | 62 | 185 | 325 | 180 | 0.3444 | 1.0278 | 1.8056 | 1.7568 | | 455 | 62 | 165 | 300 | 165 | 0.3758 | 1.0000 | 1.8182 | 1.8182 | | 500 | 46 | 125 | 250 | 84 | 0.5476 | 1.4881 | 2.9762 | 2.0000 | | 505 | 54 | 160 | 315 | 105 | 0.5143 | 1.5238 | 3.0000 | 1.9688 | | 510 | 43 | 122 | 255 | 88 | 0.4886 | 1.3864 | 2.8977 | 2.0902 | | 515 | 56 | 140 | 300 | 125 | 0.4480 | 1.1200 | 2.4000 | 2.1429 | | | BRIGHTNESS | M V | RAYLEIGHS | | RATIOS | OF OBSER | RVED INTE | NSITIES | |------------|------------|------------|-----------|----------|------------------|----------|------------------|------------------| | TIME | 6685 | 6300 | 5577 | 3914 | 6685/ | 6300/ | 5577/ | 5577/ | | | | | | | 3914 | 3914 | 3914 | 6300 | | 150 | 125 | 175 | 565 | 375 | 0.3333 | 0.4667 | 1.5067 | 3 • 2286 | | 155 | 90 | 170 | 400 | 140 | 0.6429 | 1.2143 | 2.8571 | 2.3529 | | 200 | 165 | 420. | 725 | 420 | 0.3929 | 1.0000 | 1.7262 | 1.7262 | | 205 | 72 | 165 | 340 | 160 | 0.4500 | 1.0313 | 2.1250 | 2.0606 | | 210 | 65 | 93 | 300 | 44 | 1.4773 | 2.1136 | 6.8182 | 3.2258 | | 215 | 67 | 99 | 285 | 55 | 1.2182 | 1.8000 | 5.1818 | 2.8788 | | 220 | 65 | 105 | 270 | 51 | 1.2745 | 2.0588 | 5.2941 | 2.5714 | | 225 | 0 | 0 | . 0 | 0 | | | | | | 230 | 54 | 84 | 200 | 33 | 1.6364 | 2.5455 | 6.0606 | 2.3810 | | 235 | 54 | 120 | 220 | 65 | 0.8308 | 1.8462 | 3.3846 | 1.8333 | | 240 | 45 | 71 | 170 | 23 | 1.9565 | 3.0870 | . 7.3913 | 2.3944 | | 245 | 41 | 46
| 150 | 21 | 1.9524 | 2.1905 | 7.1429 | 3.2609 | | 250 | 43 | 42 | 150 | 17 | 2.5294 | | | 3.5714 | | 255 | 95 | 140 | 345 | 24 | 3.9583 | 5.8333 | 14.3750 | 2.4643 | | 300 | 48 | 130 | 165 | 27 | 1.7778 | 4.8148 | 6.1111 | 1.2692 | | 305 | 52 | 80 | 170 | 41 | 1.2683 | 1.9512 | 4.1463 | 2.1250 | | 310 | 41 | 52 | 135 | 17 | 2.4118 | | | 2.5962 | | 315 | 43 | 87 | 135 | 18 | 2.3889 | | | 1.5517 | | 320 | 0 | 0 | 0 | 0 | | | | | | 325 | 0 | C | 0 | 0 | | | | | | 330 | Û | C | | Э | | | | | | 335 | 53 | 64 | | 36 | 1.4722 | 1.7778 | 4.5833 | 2.5781 | | 340 | 52 | 67 | | 42 | 1.2381 | 1.5952 | 3.8095 | 2.3881 | | 345 | 28 | 62 | | 42 | 0.6667 | | 1.9286 | 1.3065 | | 350 | 48 | 81 | | 42 | 1.1429 | | 3.9286 | 2.0370 | | 355 | 50 | 69 | | 40 | 1.2500 | | 4.1250 | 2.3913 | | 400 | 46 | 64 | | 38 | 1.2105 | 1.6842 | 4.4737 | 2.6563 | | 405 | 44 | 64 | | 30 | 1.4667 | | 5.8333 | 2.7344 | | 410 | 49 | 70 | | 30 | 1.6333 | | 6.0000 | 2.5714 | | 415 | 52 | 73 | | 28 | 1.8571 | | 6.4286 | 2.4658 | | 420 | 66 | 74 | | 28 | 2.3571 | | | 2.8378
2.9032 | | 425 | | 62 | | 26
21 | 1.7692
2.1905 | | 6.9231
8.5714 | 3.2143 | | 430 | 46 | 56
57 | | 20 | 2.1500 | 2.0007 | 0.07114 | 2.6316 | | 435
440 | 43
43 | 61 | | 15 | 2.8667 | | | 2.4590 | | 445 | | 62 | | 11 | 3.5455 | | | 2.4194 | | 450 | 32 | 57 | | 16 | 2.0000 | | | 2.9825 | | 455 | 36 | 5 <i>7</i> | | 12 | 3.0000 | | | 2.4561 | | 500 | | 54 | | 9 | 4.0000 | | | 2.7778 | | 505 | | 55 | | 15 | 2.3333 | | | 2.5455 | | 510 | | 56 | | 15 | 2.2000 | | | 2.5000 | | 515 | | 55
55 | | 17 | 1.9412 | | | 2.4545 | | 520 | | 61 | | 17 | 1.9412 | | | 2.2951 | | 525 | | 55 | | 18 | 1.9444 | | | 2.6364 | | 530 | | 56 | | 16 | 2.2500 | | | 2.5000 | | 535 | | 52 | | 17 | 2.1176 | | | 2.5000 | | 540 | | 40 | | 20 | 1.7500 | | | 3.6250 | | 545 | | 54 | | 18 | 1.9444 | | | 3.1481 | | 550 | | 51 | | 19 | 1.8947 | | | 2.7451 | | 555 | | 52 | 120 | 16 | 2.2500 | | | 2.3077 | FLIGHT 18 | | BRIGHTNESS | IN | RAYLEIGHS | | RATIOS | OF OBSER | VED INTE | NSITIES | |------|------------|------|-----------|------|---------------|---------------|---------------|-----------------------| | TIME | 6685 | 6300 | 5577 | 3914 | 6685/
3914 | 6300/
3914 | 5577/
3914 | 557 7/
6390 | | 605 | 36 | 53 | 145 | 21 | 1.7143 | 2.5238 | 6.9048 | 2.7358 | | 610 | 36 | 64 | 165 | 30 | 1.2000 | 2.1333 | 5.5000 | 2.5781 | | 615 | 44 | 62 | 165 | 21 | 2.0952 | 2.9524 | 7.8571 | 2.6613 | | 620 | 48 | 65 | 165 | 24 | 2.0000 | 2.7083 | 6.8750 | 2.5385 | | 625 | 49 | 64 | 165 | 26 | 1.8846 | 2.4615 | 6.3462 | 2.5781 | | 630 | 45 | 60 | 180 | 31 | 1.4516 | 1.9355 | 5.8065 | 3.0000 | | 635 | 50 | 63 | 175 | 42 | 1.1905 | 1.5000 | 4.1667 | 2.7778 | | 640 | 52 | 64 | 195 | 49 | 1.0612 | 1.3061 | 3.9796 | 3.0469 | | 645 | 56 | 68 | 200 | 55 | 1.0182 | 1.2364 | 3.6364 | 2.9412 | | 650 | 102 | 180 | 340 | 185 | 0.5514 | 0.9730 | 1.8378 | 1.8889 | | | BRIGHTNESS | IN | RAYLEIGHS | | RATIOS | OF OBSER | VED INTE | ENSITIES | |------------|-------------|------------|--------------|--------------|------------------|------------------|----------------------|------------------| | TIME | 6685 | 6300 | 5577 | 3914 | 6685/
3914 | 6300/
3914 | 5577/
3914 | 5577/
6300 | | 305
310 | 4 ()
4 4 | 52
53 | 195
285 | 160
135 | 0.2500
0.3259 | 0.3250
0.3926 | 1 • 2188
2 • 1111 | 3.7500
5.3774 | | 315 | 32 | 56 | 235 | 113 | 0.2832 | 0.4956 | 2.0796 | 4.1964 | | 320 | 29 | 55 | 195 | 90 | 0.3222 | 0.6111 | 2.1667 | 3.5455 | | 325 | 35 | 69 | 230 | 97 | 0.3608 | 0.7113 | 2.3711 | 3.3333 | | 330 | 22 | 57 | 175 | 38 | 0.5789 | 1.5000 | 4.6053 | 3.0702 | | 335 | 20 | 51 | 170 | 25 | 0.8000 | 2.0400 | 6.8000 | 3.3333 | | 340
345 | 26
36 | 58
61 | 160
190 | 26
40 | 1.0000 | 2.2308
1.5250 | 6.1538
4.7500 | 2.7586
3.1148 | | 350 | 31 | 60 | 190 | 42 | 0.7381 | 1.4286 | 4.5238 | 3.1667 | | 355 | 48 | 61 | 265 | 127 | 0.3780 | 0.4803 | 2.0866 | 4.3443 | | 400 | 60 | 68 | 345 | 165 | 0.3636 | 0.4121 | 2.0909 | 5.0735 | | 405 | 104 | 91 | 520 | 390 | 0.2667 | 0.2333 | 1.3333 | 5.7143 | | 410 | 275 | 375 | 1155 | 1070 | 0.2570 | 0.3505 | 1.0794 | 3.0800 | | 415 | 73 | 132 | 330 | 240 | 0.3042 | 0.5500 | 1.3750 | 2.5000 | | 420 | 37 | 108 | 280 | 113 | 0.3274 | 0.9558 | 2.4779 | 2.5926 | | 425 | 93 | 232 | 865 | 730 | 0.1274 | 0.3178 | 1.1849 | 3.7284 | | 430 | 27 | 65 | 185 | 70 | 0.3857 | 0.9286 | 2.6429 | 2.8462 | | 435 | 25 | 86 | 180 | 61 | 0.4098 | 1.4098 | 2.9508 | 2.0930 | | 440
445 | 38
17 | 175
74 | 225
165 | 61
48 | 0.6230
0.3542 | 2.8689
1.5417 | 3.6885
3.4375 | 1.2857
2.2297 | | 450 | 16 | 84 | 150 | 50 | 0.3200 | 1.6800 | 3.0000 | 1.7857 | | 455 | 22 | 96 | 190 | 145 | 0.1517 | 0.6621 | 1.3103 | 1.9792 | | 500 | 31 | 109 | 220 | 160 | 0.1937 | 0.6812 | 1.3750 | 2.0183 | | 505 | 155 | 190 | 835 | 460 | 0.3370 | 0.4130 | 1.8152 | 4.3947 | | 510 | 525 | 375 | 2280 | 1620 | 0.3241 | 0.2315 | 1.4074 | 6.0800 | | 515 | 245 | 265 | 990 | 920 | 0.2663 | 0.2880 | 1.0761 | 3.7358 | | 520 | 165 | 230 | 860 | 550 | 0.3000 | 0.4182 | 1.5636 | 3.7391 | | 525 | 69 | 100 | 400 | 260 | 0.2654 | 0.3846 | 1.5385 | 4.0000 | | 530 | 43 | 64 | 280 | 150 | 0.2867 | 0.4267 | 1.8667 | 4.3750 | | 535 | 33 | 59 | 235
200 | 108
75 | 0.3056 | 0.5463 | 2.1759 | 3.9831 | | 540
545 | 22
27 | 46
60 | 215 | 93 | 0.2933
0.2903 | 0.6133
0.6452 | 2.6667
2.3118 | 4.3478
3.5833 | | 550 | 40 | 74 | 285 | 200 | 0.2000 | 0.3700 | 1.4250 | 3.8514 | | 555 | 105 | 135 | 560 | 425 | 0.2471 | 0.3176 | 1.3176 | 4.1481 | | 600 | 295 | 185 | 1410 | 800 | 0.3687 | 0.2312 | 1.7625 | 7.6216 | | 605 | 440 | 330 | 2050 | 1670 | 0.2635 | 0.1976 | 1.2275 | 6.2121 | | 610 | 515 | 225 | 2480 | 2240 | 0.2299 | 0.1004 | 1.1071 | 11.0222 | | 615 | 455 | 245 | 2020 | 1560 | 0.2917 | 0.1571 | 1.2949 | 8.2449 | | 620 | 500 | 460 | 2000 | 1740 | 0.2874 | 0.2644 | 1.1494 | 4.3478 | | 625 | 215 | 235 | 960 | 970 | 0.2216 | 0.2423 | 0.9897 | 4.0851 | | 630 | | 400 | 1510 | 1400 | 0.2607 | 0.2857 | 1.0786 | 3.7750 | | 635
640 | 305
790 | 365
405 | 1380
3420 | 1220
2810 | 0.2500
0.2811 | 0.2992
0.1441 | 1.1311 | 3.7808
8.4444 | | 645 | 665 | 710 | 1790 | 2730 | 0.2436 | 0.2601 | 0.6557 | 2.5211 | | 650 | | 345 | 1720 | 1470 | 0.2687 | 0.2347 | 1.1701 | 4.9855 | | 655 | 145 | 210 | | 430 | 0.3372 | 0.4884 | 1.4884 | 3.0476 | | 700 | | 215 | | 230 | 0.3217 | 0.9348 | 1.5217 | 1.6279 | | 705 | | 210 | 370 | 450 | 0.1689 | 0.4667 | 0.8222 | 1.7619 | | 710 | 109 | 240 | 440 | 315 | 0.3460 | 0.7619 | 1.3968 | 1.8333 | FLIGHT 19 | | | BRIGHTNESS | IN | RAYLEIGHS | | RATIOS | OF OBSER | VED INTE | NSITIES | |--|----------|------------|------------|-----------|------------|---------------|---------------|---------------|-----------------------| | The state of s | ME | 6685 | 6300 | 5577 | 3914 | 6685/
3914 | 6300/
3914 | 5577/
3914 | 557 7/
6300 | | • | 20
25 | 320
99 | 380
250 | 2 - 4 - 4 | 950
330 | | 0.4000 | | | | | BRIGHTNESS | IN | RAYLEIGHS | | RATIUS | OF OBSER | VED INTE | NSITIES | |---|---|---|---|---|--|--|--|---| | TIME | 6685 | 6300 | 5577 | 3914 | 6685/
3914 | 6300/
3914 | 5577/
3914 | 5577/
6300 | | 345
350
355
400
405
410 | 145
110
530
310
160
255 | 390
345
690
510
265
310 | 615
435
1980
1010
630
975 | 790
620
1910
1180
500
1030 |
0.1835
0.1774
0.2775
0.2627
0.3200
0.2476 | 0.4937
0.5565
0.3613
0.4322
0.5300
0.3010 | 0.7785
0.7016
1.0366
0.8559
1.2600
0.9466 | 1.5769
1.2609
2.8696
1.9804
2.3774
3.1452 | | 415
420
425
430
435
440
445 | 345
255
255
205
170
145
195 | 450
265
230
290
265
330
370 | 2020
985
865
760
635
530
690 | 2100
1070
920
810
680
460
745 | 0.1643
0.2383
0.2772
0.2531
0.2500
0.3152
0.2617 | 0.2143
0.2477
0.2500
0.3580
0.3897
0.7174 | 0.9619
0.9206
0.9402
0.9383
0.9338
1.1522
0.9262 | 4.4889
3.7170
3.7609
2.6207
2.3962
1.6061 | | 450
455
500
505
510
515 | 415
435
1130
200
345
410 | 395
730
1060
570
490
410 | 1410
1140
3900
640
1250
1480 | 1500
1410
3900
740
1366
1580 | 0.2617
0.2767
0.3085
0.2897
0.2703
0.2526
0.2595 | 0.4966
0.2633
0.5177
0.2718
0.7703
0.3587
0.2595 | 0.9262
0.9400
0.8085
1.0000
0.8649
0.9151
0.9367 | 1.8649
3.5696
1.5616
3.6792
1.1228
2.5510
3.6098 | | 520
525
530
535
540
545 | 290
285
180
335
250
410 | 380
430
430
650
525
545 | 1050
1060
625
1130
1060
1600 | 1070
1140
725
410
1460
2080 | 0.2710
0.2500
0.2483
0.8171
0.1712
0.1971 | 0.3551
0.3772
0.5931
1.5854
0.3596
0.2620 | 0.9813
0.9298
0.8621
2.7561
0.7260
0.7692 | 2.7632
2.4651
1.4535
1.7385
2.0190
2.9358 | | 550
555
600
605
610
615 | 150
610
50
45
19
24 | 465
675
280
215
70
82 | 600
2320
190
140
150 | 765
2050
300
140
150 | 0.1961
0.2976
0.1667
0.3214
0.1267
0.1600 | 0.6078
0.3293
0.9333
1.5357
0.4667
0.5467 | 0.7843
1.1317
0.6333
1.0000
1.0000
0.9333 | 1.2903
3.4370
0.6786
0.6512
2.1429
1.7073 | | 620
625
630
635
640
645
650 | 29
45
24
110
3440
1340 | 84
140
89
210
790
660
570 | 127
285
130
470
13300
5540
3570 | 170
250
215
675
13900
4800
3280 | 0.1706
0.1800
0.1116
0.1630
0.2475
0.2792
0.3323 | 0.4941
0.5600
0.4140
0.3111
0.0568
0.1375
0.1738 | 0.7471
1.1400
0.6047
0.6963
0.9568
1.1542
1.0884 | 1.5119
2.0357
1.4607
2.2381
16.8354
8.3939
6.2632 | | 655
700
705
710
715
720
725 | 350
23
42
33
40
100
825 | 90
53
79
60
62
130
1030 | 185
120
145
110
140
340
3260 | 185
120
125
110
210
1150
3430 | 1.8919
0.1917
0.3360
0.3000
0.1905
0.0870
0.2405 | 0.4865
0.4417
0.6320
0.5455
0.2952
0.1130
0.3003 | 1.0000
1.0000
1.1600
1.0000
0.6667
0.2957
0.9504 | 2.0556
2.2642
1.8354
1.8333
2.2581
2.6154
3.1650 | | 730
735
740
745
750 | 755
33
3170
755
1270 | 220
83
1030
690
800 | 3200
175
12200
3740
4600 | 3400
270
13100
3850
4900 | 0.2221
0.1222
0.2420
0.1961
0.2592 | 0.0647
0.3074
0.0786
0.1792
0.1633 | 0.9412
0.6481
0.9313
0.9714
0.9388 | 14.5455
2.1084
11.8447
5.4203
5.7500 | FLIGHT 20 | | BRIGHTNESS | IN | RAYLEIGHS | | RATIOS | OF OBSER | VED INTE | NSITIES | |------------|-------------|------------|--------------|--------------|---------------|---------------|---------------|---------------| | TIME | 6685 | 6300 | 5577 | 3914 | 6685/
3914 | 6300/
3914 | 5577/
3914 | 5577/
6300 | | 800
805 | 1290
655 | 730
560 | 4500
2190 | 4980
2400 | | 0.1466 | | | | | BRIGHTNESS | IN | RAYLEIGHS | | RATIOS | OF OBSER | VED INTE | ENSITIES | |-------------|--------------------|------------|--------------|--------------|------------------|------------------|------------------|-------------------| | TIME | 6685 | 6300 | 5577 | 3914 | 6685/
3914 | 6300/
3914 | 5577/
3914 | 5577/
6300 | | 535 | 350 | 330 | 180 | 395 | C.8861 | 0.8354 | 0.4557 | 0.5455 | | 540 | 80 | 190 | 350 | 530 | O.1509 | 0.3585 | 0.6604 | | | 545 | 220 | 330 | 1000 | 840 | 0.2619 | 0.3929 | 1.1905 | 3.0303 | | 550 | 125 | 300 | 585 | 470 | 0.2660 | 0.6383 | 1.2447 | 1.9500 | | 555 | 67 | 130 | 210 | 210 | 0.3190 | 0.6190 | 1.0000 | 1.6154 | | 600 | 82 | 150 | 330 | 350 | 0.2343 | 0.4286 | 0.9429 | 2.2000 | | 605 | 65 | 130 | 215 | 255 | 0.2549 | 0.5098 | 0.8431 | 1.6538 | | 610 | 185 | 175 | 735 | 550 | 0.3364 | 0.3182 | 1.3364 | 4.2000 | | 615 | 65 | 125 | 255 | 245 | 0.2653 | 0.5102 | 1.0408 | 2.0400 | | 620 | 72 | 160 | 280 | 270 | 0.2667 | 0.5926 | 1.0370 | 1.7500 | | 625 | 62 | 155 | 260 | 380 | 0.1632 | 0.4079 | 0.6842 | 1.6774 | | 630 | 93 | 170 | 380 | 540 | 0.1722 | 0.3148 | 0.7037 | 2.2353 | | 635 | 110 | 185 | 485 | 615 | 0.1789 | 0.3008 | 0.7886 | 2.6216 | | 640 | 225 | 270 | 280 | 280 | 0.8036 | 0.9643 | 1.0000 | 1.0370 | | 645 | 650 | 310 | 2850 | 2650 | 0.2453 | 0.1170 | 1.0755 | 9.1935 | | 650 | 1130 | 320 | 4580 | 4290 | 0.2634 | 0.0746 | 1.0676 | 14.3125 | | 655 | 590 | 245 | 2580 | 2370 | 0.2489 | 0.1034 | 1.0886 | 10.5306 | | 700 | 270 | 215 | 1200 | 1010 | 0.2673 | 0.2129 | 1.1881 | 5.5814 | | 705 | 295 | 220 | 300 | 265 | 1.1132 | 0.8302 | 1.1321 | 1.3636 | | 710 | 765 | 320 | 345 | 820 | 0.9329 | 0.3902 | 0.4207 | 1.0781 | | 715 | 13600 | 2360 | 36800 | 47900 | 0.2839 | 0.0493 | 0.7683 | 15.5932 | | 720 | 445 | 395 | 1690 | 2240 | 0.1987 | 0.1763 | 0.7545 | 4.2785 | | 725 | 2430 | 1340 | 10300 | 12700 | 0.1913 | 0.1055 | 0.8110 | 7.6866 | | 730 | 135 | 250 | 590 | 875 | 0.1543 | 0.2857 | 0.6743 | 2.3600 | | 735 | 250 | 290 | 940 | 250 | 1.0000 | 1.1600 | 3.7600 | 3.2414 | | 740 | 670 | 345 | 2560 | 2600 | 0.2577 | 0.1327 | 0.9846 | 7.4203 | | 745 | 2130 | 510 | 7920 | 8030 | 0.2653 | 0.0635 | 0.9863 | 15.5294 | | 750 | 1540 | 379 | 5760 | 6320 | 0.2437 | 0.0585 | 0.9108 | 15.5676 | | 755 | 1040 | 290 | 3780 | 4150 | 0.2506 | 0.0699 | | 13.0345 | | 800 | 1170 | 280 | 4270 | 5070 | 0.2308 | 0.0552 | | 15.2500 | | 805 | 920 | 260 | 3330 | 4020 | 0.2289 | 0.0647 | 0.8284 | 12.8077 | | 810 | 950 | 245 | 3330 | 4020 | 0.2363 | 0.0609 | 0.8284 | 13.5918 | | 815 | 1230 | 270 | 4000 | 4800 | 0.2562 | 0.0562 | | 14.8148 | | 820 | 860 | 250 | 3050 | 3480 | 0.2471 | 0.0718 | | 12.2000 | | 825 | 830 | 365 | 3600 | 4100 | 0.2024 | 0.0890 | | 9.8630 | | 830
835 | 800
400
25.5 | 300
275 | 3050
2250 | 3180
2320 | 0.2516
0.1724 | 0.0943
0.1185 | 0.9591
0.9698 | 10.1667
8.1818 | | 840 | 255 | 235 | 1840 | 1870 | 0.1364 | 0.1257 | 0.9840 | 7.8298 | | 845 | 495 | 215 | 1970 | 1990 | 0.2487 | 0.1080 | 0.9899 | 9.1628 | | 850 | 390 | 225 | 1400 | 1660 | 0.2349 | 0.1355 | 0.8434 | 6.2222 | | 855 | 505 | 275 | 1980 | 1990 | 0.2538 | 0.1382 | 0.9950 | 7.2000 | | 900 | 295 | 215 | 1260 | 1190 | 0.2479 | 0.1807 | 1.0588 | 5.8605 | | 905 | 395 | 225 | 375 | 340 | 1.1618 | 0.6618 | 1.1029 | 1.6667 | | 910 | 370 | 215 | 350 | 330 | 1.1212 | 0.6515 | 1.0606 | 1.6279 | | 915 | 68 | 220 | 420 | 400 | 0.1700 | 0.5500 | 1.0500 | 1.9091 | | 9 20 | 80 | 240 | 490 | 455 | 0.1758 | 0.5275 | 1.0769 | 2.0417 | | 925 | 630 | 235 | 2430 | 2460 | 0.2561 | 0.0955 | 0.9878 | | | 930 | 920 | 245 | 2860 | 3590 | 0.2563 | 0.0682 | 0.7967 | 11.6735 | | 935 | 370 | 215 | 1640 | 1410 | 0.2624 | 0.1525 | 1.1631 | 7.6279 | | 940 | 180 | 160 | 720 | 590 | 0.3051 | 0.2712 | 1.2203 | 4.5000 | FLIGHT 21 | | BRIGHTNESS | IN | RAYLEIGHS | | RATIOS | OF OBSER | VED INTE | NSITIES | |--|--|---|--|--|--|--|--|--| | TIME | 6685 | 6300 | 5577 | 3914 | 6685/
3914 | 6300/
3914 | 5577/
3914 | 5577/
6300 | | 950
955
1000
1005
1010
1015
1020 | 70
53
47
57
60
225
390 | 91
75
67
105
88
270
510 | 225
200
195
240
325
965
1710 | 135
105
105
160
260
950
1740 | 0.5185
0.5048
0.4476
0.3562
0.2308
0.2368 | 0.6741
0.7143
0.6381
0.6563
0.3385
0.2842
0.2931 | 1.6667
1.9048
1.8571
1.5000
1.2500
1.0158
0.9828 | 2.4725
2.6667
2.9104
2.2857
3.6932
3.5741
3.3529 | | | BRIGHTNESS | IN | RAYLEIGHS | | RATIOS | OF OBSE | RVED INTE | ENSITIES | |------------|------------|------------|--------------|--------------|------------------|----------|-----------|------------------| | TIME | 6685 | 6300 | 5577 | 3914 | 6685/ | 6300/ | 5577/ | 5577/ | | | | | | | 3914 | 3914 | 3914 | 6300 | | 600 | 255 | 230 | 1000 | 770 | 0.3312 | 0.2987 | 1.2987 | 4.3478 | | 605 | 165 | 290 | 670 | 490 | 0.3367 | 0.5918 | 1.3673 | 2.3103 | | 610 | 210 | 220 | 790 | 650 | 0.3231 | 0.3385 | 1.2154 | 3.5909 | | 615 | 185 | 200 | 700 | 610 | 0.3033 | 0.3279 | 1.1475 | 3.5000 | | 620 | 390 | 420 | 1600 | 1350 | 0.2889 | 0.3111 | 1.1852 | 3.8095 | | 625 | 220 | 200 | 860 | 780 | 0.2821 | 0.2564 | 1.1026 | 4.3000 | | 630 | 220 | 350 | 890 | 770 | 0.2857 | 0.4545 | 1.1558 | 2.5429 | | 635 | 200 | 310 | 740 | 670 | 0.2985 | 0.4627 | 1.1045 | 2.3871 | | 640 | 215 | 235 | 820 | 750 | 0.2867 | 0.3133 | 1.0933 | 3.4894 | | 645 | 190 | 210 | 770 | 650 | 0.2923 | 0.3231 | 1.1846 | 3.6667 | | 650 | 130 | 140 | 450 | 415 | 0.3133 | 0.3373 | 1.0843 | 3.2143 | | 655 | 240 |
270 | 930 | 770 | 0.3117 | 0.3506 | 1.2078 | 3.4444 | | 700 | 100 | 150 | 280 | 250 | 0.4000 | 0.6000 | 1.1200 | 1.8667 | | 705 | 8.8 | 175 | 240 | 200 | 0.4400 | 0.8750 | 1.2000 | 1.3714 | | 710 | 120 | 210 | 380 | 340 | 0.3529 | 0.6176 | 1.1176 | 1.8095 | | 715 | 115 | 180 | 390 | 375 | 0.3067 | 0.4800 | 1.0400 | 2.1667 | | 920 | 360 | 245 | 1660 | 1330 | 0.2707 | 0.1842 | 1.2481 | 6.7755 | | 725 | 80 | 115 | 270 | 270 | 0.2963 | 0.4259 | 1.0000 | 2.3478 | | 730 | 51 | 64 | | 145 | 0.3517 | 0.4414 | 0.7586 | 1.7188 | | 735 | 52 | 65 | | 190 | 0.2737 | 0.3421 | 0.6842 | 2.0000 | | 740 | 79 | 56 | | 290 | 0.2724 | 0.1931 | 0.5000 | 2.5893 | | 745 | 72 | 56 | | 325 | 0.2215 | 0.1723 | 0.5077 | 2.9464 | | 750 | 102 | 170 | | 1000 | 0.1020 | 0.1700 | 0.4600 | 2.7059 | | 755 | 195 | 225 | 770 | 1050 | 0.1857 | 0.2143 | 0.7333 | 3.4222 | | 800 | 2720 | 1170 | 7150 | 5350 | 0.5084 | 0.2187 | 1.3364 | 6.1111 | | 805 | 255 | 620 | 890 | 835 | 0.3054 | 0.7425 | 1.0659 | 1.4355 | | 810
815 | 350
345 | 650
800 | 1240
1430 | 1150
1550 | 0.3043
0.2226 | 0.5652 | 1.0783 | 1.9077
1.7875 | | 820 | 1120 | 800 | | 5100 | 0.2196 | 0.1569 | 0.9412 | 6.0000 | | 825 | 270 | 370 | | 1050 | 0.2571 | 0.3524 | 1.0190 | 2.8919 | | 830 | 860 | 480 | | 3250 | 0.2646 | 0.1477 | 1.0769 | | | 835 | 310 | 340 | | 1060 | 0.2925 | 0.3208 | 1.0000 | 3.1176 | | 840 | 700 | 280 | | 3000 | | 0.0933 | | | | 845 | 180 | 280 | | 610 | 0.2951 | 0.4590 | 1.0000 | 2.1786 | | 850 | 450 | 355 | | 1680 | 0.2679 | 0.2113 | 1.0357 | 4.9014 | | 855 | 190 | 280 | | 570 | 0.3333 | 0.4912 | 1.5789 | 3.2143 | | 900 | 190 | 355 | | 710 | 0.2676 | 0.5000 | 0.8732 | 1.7465 | | 905 | 100 | 240 | | 370 | 0.2703 | 0.6486 | 0.8378 | 1.2917 | | 910 | 265 | 310 | | 1400 | 0.1893 | 0.2214 | 0.8357 | 3.7742 | | 915 | 125 | 150 | | 475 | 0.2632 | 0.3158 | 0.9474 | 3.0000 | | 920 | 1230 | 1330 | | 0 | | | | | | 925 | 775 | 665 | 3300 | 3050 | 0.2541 | 0.2180 | 1.0820 | 4.9624 | | 930 | 480 | 360 | 2000 | 2020 | 0.2376 | 0.1782 | 0.9901 | 5.5556 | | 935 | 310 | 240 | | 1250 | 0.2480 | 0.1920 | 0.9600 | 5.0000 | | 940 | 170 | 180 | | 690 | 0.2464 | 0.2609 | 0.9420 | 3.6111 | | 945 | 575 | 340 | | 2320 | 0.2478 | 0.1466 | 0.9052 | 6.1765 | | 950 | 1040 | 565 | | 3670 | 0.2834 | 0.1540 | 1.0218 | 6.6372 | | 955 | 1070 | 500 | | 4020 | 0.2662 | 0 • 1244 | 0.9478 | 7.6200 | | 1000 | | 180 | | 1000 | 0.2650 | 0.1800 | 0.8300 | 4.6111 | | 1005 | O | О | O | 0 | | | | | FLIGHT 22 | | BRIGHTNESS | | RAYLEIGHS | | RATIOS | OF OBSER | VED INTE | NSITIES | |------|------------|------------|--------------|--------------|---------------|---------------|---------------|---------------| | TIME | 6685 | 6300 | 5577 | 3914 | 6685/
3914 | 6300/
3914 | 5577/
3914 | 5577/
6300 | | 1015 | | 250
330 | 1470
1540 | 2050
1710 | | 0.1220 | | | | | BRIGHTNESS | | RAYLEIGHS | | RATIOS | OF OBSER | VED INTE | ENSITIES | |------------|--------------|---------|-----------|---------|--------|----------|----------|----------| | TIME | 6685 | 6300 | 5577 | 3914 | 6685/ | 6300/ | 5577/ | 5577/ | | 8 E 17 Eur | 0000 | 0 3 0 0 | 2211 | J / L ! | 3914 | 3914 | 3914 | 6300 | | (00 | 020 | 270 | 3400 | 2140 | 0.2911 | 0.0854 | 1 0750 | 12.5926 | | 600 | 920 | 270 | 3400 | 3160 | | | | | | 605 | 485 | 230 | 1870 | 1730 | 0.2803 | 0.1329 | 1.0809 | | | 610 | 3400 | 520 | 13600 | 17400 | 0.1954 | 0.0299 | | 26.1538 | | 615 | 920 | 295 | 4080 | 4700 | 0.1957 | | | 13.8305 | | 620 | 625 | 245 | 2380 | 2080 | 0.3005 | | 1.1442 | | | 625 | 850 | 255 | 3530 | 3540 | 0.2401 | 0.0720 | | 13.8431 | | 630 | 120 | 170 | 340 | 380 | 0.3158 | 0.4474 | 0.8947 | | | 635 | 66 | 77 | 110 | 105 | 0.6286 | 0.7333 | 1.0476 | 1.4286 | | 640 | 67 | 42 | 164 | 78 | 0.8590 | 0.5385 | 1.3333 | 2.4762 | | 645 | 65 | 65 | 103 | 65 | 1.0000 | 1.0000 | 1.5846 | 1.5846 | | 650 | 70 | 59 | 98 | 76 | 0.9211 | 0.7763 | 1.2895 | 1.6610 | | 655 | 125 | 63 | 196 | 71 | 1.7606 | 0.8873 | 1.4930 | 1.6825 | | 700 | 75 | 50 | 95 | 56 | 1.3393 | 0.8929 | 1.6964 | 1.9000 | | 705 | 82 | 54 | 106 | 52 | 1.5769 | 1.0385 | 2.0385 | 1.9630 | | 710 | 79 | 52 | 100 | 54 | 1.4630 | 0.9630 | 1.8519 | 1.9231 | | 715 | 74 | 46 | 106 | 37 | 2.0000 | 1.2432 | 2.8649 | 2.3043 | | 720 | 61 | 42 | 92 | 23 | 2.6522 | 1.8261 | 4.0000 | 2.1905 | | 725 | 60 | 42 | .89 | 22 | 2.7273 | 1.9091 | 4.0455 | 2.1190 | | 730 | 52 | 48 | 93 | 48 | 1.0833 | 1.0000 | 1.9375 | 1.9375 | | 735 | 48 | 45 | 99 | 103 | 0.4660 | 0.4369 | 0.9612 | 2.2000 | | 740 | 1210 | 630 | 3000 | 2750 | 0.4400 | 0.2291 | 1.0909 | 4.7619 | | 745 | 380 | 265 | | 1720 | 0.2209 | | 0.8198 | 5.3208 | | | | | 1410 | | | 0.1541 | | | | 750 | 410 | 245 | 1370 | 2250 | 0.1822 | 0.1089 | 0.6089 | 5.5918 | | 755 | 400
740 | 185 | 1370 | 1600 | 0.2500 | 0.1156 | 0.8562 | 7.4054 | | 800 | 760 | 390 | 2370 | 3020 | 0.2517 | 0.1291 | 0.7848 | 6.0769 | | 805 | 385 | 180 | 1340 | 1520 | 0.2533 | 0.1184 | 0.8816 | 7.4444 | | 810 | 350 | 200 | 1060 | 1230 | 0.2846 | 0.1626 | 0.8618 | 5.3000 | | 815 | 395 | 180 | 1270 | 1470 | 0.2687 | 0.1224 | 0.8639 | 7.0556 | | 820 | 490 | 120 | 1489 | 1610 | 0.3043 | 0.0745 | 0.9193 | | | 825 | 550 | 195 | 1750 | 1980 | 0.2778 | 0.0985 | 0.8838 | 8.9744 | | 830 | 610 | 225 | 2130 | 2400 | 0.2542 | 0.0938 | 0.8875 | 9.4667 | | 835 | 395 | 190 | 1310 | 1340 | 0.2948 | 0.1418 | 0.9776 | 6.8947 | | 840 | 260 | 165 | 860 | 880 | 0.2955 | 0.1875 | 0.9773 | 5.2121 | | 845 | 60 | 115 | 240 | 285 | 0.2105 | 0.4035 | 0.8421 | 2.0870 | | 850 | 46 | 86 | 105 | 106 | 0.4340 | 0.8113 | 0.9906 | 1.2209 | | 855 | 41 | 96 | 104 | 99 | 0.4141 | 0.9697 | 1.0505 | 1.0833 | | 900 | 31 | 64 | 62 | 50 | 0.6200 | 1.2800 | 1.2400 | 0.9688 | | 905 | 52 | 82 | 110 | 180 | 0.2889 | 0.4556 | 0.6111 | 1.3415 | | 910 | 75 | 96 | 270 | 280 | 0.2679 | 0.3429 | 0.9643 | 2.8125 | | 915 | 100 | 108 | 370 | 350 | 0.2857 | 0.3086 | 1.0571 | 3.4259 | | 920 | 290 | 175 | 1210 | 1350 | 0.2148 | 0.1296 | 0.8963 | 6.9143 | | 925 | 300 | 175 | 1350 | 2180 | 0.1376 | 0.0803 | 0.6193 | 7.7143 | | 930 | 290 | 180 | 1500 | 2210 | 0.1312 | 0.0814 | 0.6787 | 8.3333 | | 935 | 290 | 170 | 1620 | 2050 | 0.1415 | 0.0829 | 0.7902 | 9.5294 | | 940 | 480 | 155 | 1680 | 1570 | 0.3057 | | 1.0701 | | | 945 | 410 | 135 | 1860 | 2560 | 0.1602 | 0.0527 | | 13.7778 | | 950 | 390 | 135 | 1020 | 1040 | 0.3750 | | 0.7200 | | | 955 | | 135 | 1040 | | | 0.1290 | 0.98966 | | | ソフン | 330 | | 1040 | 1160 | 0.2845 | J. 1104 | 0.0000 | 7.7037 | | | \$ I B S Y S | | 0.07 | | | | | | | | \$RESTO | KE | 896 | | | | | | #### APPENDIX II #### SPECTROMETER CONDITIONS Unless otherwise noted, the spectral range was \sim 12,400 - 14,000 Å. #### Flight 6 | UT | Filter (order) | Slit Width | P. M. Tube * Gain Setting | Comments | |------|----------------|------------|---------------------------|-----------| | 1944 | None | 10.0 mm | 10 | | | 2034 | | | 3 | | | 2037 | | 1.0 | 4 | | | 2041 | | | 5 | | | 2042 | | 0.4 | 4,6,8 | | | 2103 | | | 6 | Sunrise | | | | Flight | 7 | | | 0315 | Second | 2.0 mm | 10 | | | 0342 | | | | Last Scan | | | | Flight | 9 | | | 0340 | None | 0.6 mm | 10 | | | 0403 | | 1.0 | | | | 0732 | | | | Last Scan | | | | Flight | 10 | | | 0548 | None | 10.0 mm | 10 | | | 0552 | | 4.0 | | | | 0656 | Second | 10.0 | | | | 0733 | None | Co. | | | | 0804 | Third | | | | $^{^{*}}$ See end of this appendix | Flight 10 (cont.) | | | | | | | |-----------------------|--|------------------|----------------------------|-----------|--|--| | UT | Filter (order) | Slit Width | P. M. Tube
Gain Setting | Comments | | | | Annata of Miller Str. | amba agama ja go ngo ngo ngo ngo ngo ngo ngo ngo ngo | | | | | | | 0816 | Fourth | | | | | | | 0854 | None | | | | | | | 0930 | | 4.0 mm | | | | | | 1105 | | | | Last Scan | | | | | | Flight | 11 | | | | | | (Wavelengt | th range to cove | r 3914 in third ord | ler) | | | | 0703 | Third | 1.0 mm | 10 | | | | | 0724 | | 2.0 | | | | | | 0818 | | 1.0 | | | | | | 0849 | | 0.6 | | | | | | 1051 | | | | Last Scan | | | | | | Flight | 12 | | | | | | | (3914, third | | | | | | 0552 | Third | 0.6 mm | 10 | | | | | 0648 | | 1.0 | | | | | | 0652 | | | 3 | | | | | 0656 | | | 10 | | | | | 1018 | | | | Last Scan | | | | | | Flight | 14 | | | | | 0618 | None | 1.0 mm | 10 | | | | | 0629 | Fourth | | | | | | | 0652 | Second | | | | | | | 0702 | | 6.0 | | | | | | 0755 | Fourth | | | | | | | 0835 | Second | | | | | | ## Flight 14 (cont.) | <u>UT</u> | Filter (order) | Slit Width | P. M. Tube
Gain Setting | Comments | |--------------|----------------|------------|----------------------------|---------------------------------| | 0914 | Fourth | | | | | 0949 | Second | | | | | 1008 | Fourth | | | | | 1047 | Second | | | | | 1110 | | | | Last Scan | | | | Flight | 15 | | | 38 | Second | 6.0 mm | 10 | | | 540 | | 2.0, 4.0 | | | | 0552 | Fourth | | | | | 0613 | Second | 6.0 | | | | 0625 | Fourth | | | | | 0643 | Second | | | | | 0702 | Fourth | | | | | 0720 | None | | | | | 0743 | Fourth | | | Problem with curtain until here | | 0805 | Second | | | | | 0822 | Fourth | | | | | 0840 | Second | | | | | 0858 | Fourth | | | | | 0916 | Second | | | | | 0 936 | Fourth | | | | | 0954 | Second | | | | | 1011 | None | | | | | 1012 | | 2.0 | | | | 1018 | | 1.0 | | | | 1025 | | | | Last Scan | ## Flight 16 | | | | P. M. Tube | | |-------------------------|----------------|------------|--------------|-----------| | $\underline{\text{UT}}$ | Filter (order) | Slit Width | Gain Setting | Comments | | 0904 | Second | 2.0 mm | 10 | | | 0919 | | 4.0 | | | | 0941 | | 6.0 | | | | 1001 | Fourth | | | | | 1020 | Second | F | | | | 1040 | Fourth | | | | | 1051 | None | | | | | 1158 | | 2.0 | | | | 1235 | | | | Last Scan | | | | Flight | 17 | | | 0150 | Casand | 6 0 mm | 10 | | | 0150 | Second | 6.0 mm | 10 | | | 0155 | | 2.0 | | | | 0218 | None | | | | | 0357 | | 0.6 | | | | 0400 | Second | | | | | 0400 | None | | | | | | | Flight | 18 | | | 0145 | None | 6.0 mm | 10 | | |
0150 | | 2.0 | | | | 0221 | Fourth | 6.0 | | | | 0237 | | 4.0 | | | | 0247 | Second | 6.0 | | | | 0306 | Fourth | | | | | 0324 | Second | | | | # Flight 18 (cont.) | UT | Filter (order) | Slit ' | Width | P. M. Tube
Gain Setting | g Comme: | nts | |--------------|--|-----------------------|--|----------------------------|---|-----| | | Bernaturk aus der Geschaftliche von Africans Offense und Geschaftliche der Alle von Africa der Anders der Anders Anders der d | erendens consultation | Description of the second t | | - Include the Control of | | | 0343 | Fourth | | | | | | | 0401 | Second | | | | | | | 0421 | Fourth | | | | | | | 0439 | Second | | | | | | | 0 456 | Fourth | | | | | | | 0514 | Second | | | | | | | 0532 | Fourth | | | | | | | 0551 | Second | | | | | | | 0609 | Fourth | | | | | | | 0626 | Second | | | | | | | 0644 | None | | | | | | | 0650 | | | | | Last Sc | an | | | | | Flight 19 | 9 | | | | | | | 1 118110 1 | <u>-</u> | | | | 0308 | Second | 6. | 0 mm | 10 | | | | 0414 | None | | | | | | | 0434 | | 2. | 0 | | | | | 0504 | | 1. | 0 | | | | | 0513 | | 2. | 0 | | | | | 0618 | | 1. | 0 | | | | | 0700 | | 6. | 0 | | | | | 0717 | Second | | | | | | | 0718 | None | | | | | | | 0721 | | 4. | 0 | | | | | 0726 | | | | | Last So | can | Flight 20 | <u>UT</u> | Filter (order) | Slit Width | Gain Setting | Comments | |-----------|----------------|------------|--------------|-----------| | 0301 | None | 4.0 mm | 10 | | | 0412 | | 2.0 | | | | 0459 | | 1.0 | | | | 0507 | | 2.0 | | | | 0639 | | 0.6 | | | | 0649 | | 1.0 | | | | 0650 | | | 9 | | | 0651 | | | 10 | | | 0734 | | 1 | 9 | | | 0735 | | | 10 | | | 0742 | | | 9 | | | 0744 | | | 10 | | | 0805 | | | | Last Scan | | | | Flight | 21 | | | 0531 | None | 2.0 mm | 10 | | | 0536 | | 1.0 | | | | 0600 | | 2.0 | | | | 0604 | | | 9 | | | 0644 | | 1.0 | | | | 0645 | | | 10 | | | 0714 | | | 9 | | | 0715 | | | 8 | | | 0716 | | 0.6 | 9 | | | 0717 | | | 10 | | | 0722 | | 1.0 | | | | | | Flight 21 (c | | | |------|----------------|--------------|----------------------------|-----------| | UT | Filter (order) | Slit Width | P. M. Tube
Gain Setting | Comments | | 0724 | | 0.6 mm | 9 | | | 0725 | | | 10 | | | 0727 | | 1.0 | | | | 0741 | | | 9 | | | 0758 | | | 10 | | | 0858 | | 2.0 | | | | 0918 | | 1.0
2.0 | 9 | | | 0937 | | | 10 | | | 1019 | | | 9 | | | 1020 | | | 10 | | | 1023 | | | | Last Scan | | | | Flight | 22 | | | 0555 | None | 2.0 mm | 10 | | | 0603 | | 1.0
2.0 | | | | 0719 | | 1.0 | | | | 0730 | | 2.0 | | | | 0758 | | 1.0 | | | | 0759 | | | 9 | | | 0818 | | 0.6
1.0 | | | | 0828 | | 2.0 | | | | 0831 | | 1.0 | | | | 0836 | | 2.0 | | | | 0840 | | 1.0 | | | #### Flight 22 (cont.) | | | | P.M. Tube | | |--------------|----------------|-------------|--------------|-----------| | UT | Filter (order) | Slit Width | Gain Setting | Comments | | 0852 | | 2.0 mm | | | | 0921 | | 1.0 | | | | 0934 | | 2.0 | | | | 0947 | | 1.0 | | | | 0957 | | 2.0 | | | | 1005 | | 1.0 | | | | 1016 | | 2.0 | | | | 1025 | | 1.0 | | | | 1036 | | | | Last Scan | | | | Flight 2 | <u>3</u> | | | 0 558 | None | 2.0 mm | 10 | | | 0559 | | 1.0 | 9 | | | 0601 | | | 10 | | | 0602 | • | 2.0 | | | | 0607 | | 1.0 | | | | 0614 | | 2.0 | | | | 0638 | | 4.0 | | | | 0640 | Second | | | | | 0645 | | 6 .0 | | | | 0739 | None | 2.0 | | | | 0740 | | 1.0 | | | | 0744 | | 2.0 | | | | 0748 | | 1.0 | | | | 0749 | | 2.0 | | | | 0848 | | 4.0 | | | # Flight 23 (cont.) | UT | Filter (order) | Slit Width | P. M. Tube
Gain Setting | Comments | |---------|----------------|---|----------------------------|---| | | 112001 (01001) | Autoritorios (Quality and Consellor and Consellor | | ennen gjarngagen meg en prijem per mej her valder de direkted | | 0911 | | 2.0 mm | |
 | 0940 | | 1.0 | | | | 0942 | | 2.0 | | | | 1035 | | | | Last Scan | | | | Flight | 24 | | | 0529 | None | 2.0 mm | 10 | | | 0530 | | 4.0 | | | | 0538 | | 6.0 | | | | 0559 | Second | | | | | 0620-34 | : | | | Calibration | | 0634 | Second | 4.0 | 10 | | | 0653 | Fourth | | | | | 0714 | Second | | | | | 0731 | Fourth | | | | | 0750 | Second | | | | | 0819 | Fourth | | | | | 0835 | Second | | | | | 0855 | Fou rth | | | | | 0923 | Second | | | | | 1010 | | | | Last Scan | | | | Flight | 25 | | | 0604 | None | 2.0 mm | 10 | | | 0630 | Second | | | | | 0632 | | 4.0 | | | # Flight 25 (cont.) | UT | Filter (order) | Slit W | | P.M. Tube
Gain Setting | Comments | |----------|----------------|-------------------|-------------------|---------------------------|---------------------| | 0648 | | 6.0 | mm | | | | 0854 | | 4.0 | | | | | 1020 | | | | | Last Scan | | | | | T31:-1-1 0.0 | | | | | | | Flight 26 | | | | 0906 | Second | 6 .0 | mm | 10 | | | 0930 | Fourth | | | | | | 0950 | Second | | | | | | 1027 | Fourth | | | | | | 1101 | Second | | | | | | 1136 | Fourth | | | | | | 1217 | Second | | | | | | 1256 | Fourth | | | | | | 1331 | Second | | | | | | 1406 | Fourth | | | | | | 1441 | Second | | | | | | 1502 | | | | | Last Scan | | | | | Flight 27 | | | | 1000 | Second | 4.0 | mm | 10 | | | 1425 | | | | | Last Scan | | P. M. | Gain Setting: | 3 | 4 | 5 | 6 | | | | 1.1×10^4 | 9.6×10^4 | 2.5×10^{5} | 7.2×10^{5} | | P. M. G | ain Setting: | 7 | 8 | 9 | 10 | | Actual 1 | P. M. Gain: | 1.1×10^6 | 1.8×10^6 | 3×10^6 | 5 x 10 ⁶ | APPENDIX III Spectral features identified from the spectrometer records. | $\underline{n \lambda}$ (Å) | | Identification | Order | λ (Å) | |-----------------------------|---------------------|--|-------|--------| | 12416 | $^{ m N}_2$ | 2 PG (4, 3) | 4 | 3104.0 | | 12454 | ΝI | 3s ⁴ P _{2 1/2} - 4p ⁴ S ^o _{1 1/2} | 3 | 4151.5 | | 12467 | $^{ m N}_2$ | 2 PG (3,2) | 4 | 3116.7 | | 12500 | N_2^{+} | 1 NG (3,4) | 3 | 4166.8 | | 12528 | N II | $3d^{1}D_{2}^{0} - 4f^{1}F_{3}$ | 3 | 4176 | | 12544 | $^{ m N}_2$ | 2 PG (2,1) | 4 | 3136.0 | | 12597 | $^{\mathrm{N_2}^+}$ | 1 NG (2,3) | 3 | 4199.1 | | 12601 | O I | ³ P - ¹ D | 2 | 6300.3 | | 12637 | $^{ m N}_2$ | 2 PG (1,0) | 4 | 3159.3 | | 12669 | ΝI | $3s^{4}P_{2\ 1/2}^{}$ - $4p^{4}P_{2\ 1/2}^{}$ | 3 | 4223 | | 12710 | N_2^{+} | 1 NG (1,2) | 3 | 4236.5 | | 12728 | ΟI | ³ P - ¹ D | 2 | 6363.8 | | 12834 | $^{\mathrm{N_2}}^+$ | I NG (0,1) | 3 | 4278.1 | | 12910 | ΟI | ${}^{3}P$ ${}^{5}P$ - 5s ${}^{5}S_{2}^{0}$ | 2 | 6455 | | 12937 | $^{ m N}_2$ | 1 PG (8, 5) | 2 | 6468.5 | | 12951 | O II | $3s {}^{4}P_{1/2} - 3p {}^{4}P_{1 \ 1/2}^{0}$ | 3 | 4317.1 | | 12959 | O II | $3s\ ^4P_{1\ 1/2}$ - $3p\ ^4P_{2\ 1/2}^{0}$ | 3 | 4319.6 | | 12960 | $^{ m N}_2$ | V K (1, 13) | 3 | 4320 | #### APPENDIX III (Cont'd) | <u>nλ</u> (Å) | | Identification | Order | λ (Å) | |---------------|------------------------|---|-------|--------| | 12964 | N II | 3s ¹ P ₁ - 3p ¹ P ₁ | 2 | 6482.0 | | 13031 | $^{ m N}_2$ | 2 PG (0.4) | 3 | 4343.6 | | 13090 | $^{\mathrm{N}}_{2}$ | 1 PG (7, 4) | 2 | 6544.8 | | 13105 | I O | $3s {}^{3}S_{1}^{0} - 4p {}^{3}P$ | 3 | 4368.3 | | 13108 | O II | $^{2}D_{1\ 1/2}^{0}$ - $^{2}D_{1\ 1/2}^{0}$ | 3 | 4369.3 | | 13126 | H | Balmer $lpha$ | 2 | 6562.8 | | 13141 | $^{\mathrm{N}}_{2}$ | 2 PG (3, 3) | 4 | 3285.3 | | 13247 | $^{\mathrm{N}}_{2}$ | 1 PG (6, 3) | 2 | 6623.6 | | 13275 | $^{ m N}_2$ | V K (2, 14) | 3 | 4425 | | 13297 | N_2 | G K (0, 10) | 3 | 4432.3 | | 13356 | $^{ m N}_2$ | 2 PG (1, 1) | 4 | 3339 | | 13410 | N_2 | 1 PG (5, 2) | 2 | 6704.8 | | 13485 | $^{ m N}_2$ | 2 PG (0,0) | 4 | 3371.3 | | 13577 | N_2 | 1 PG (4, 1) | 2 | 6788.6 | | 13602 | $^{ m N}_2$ | V K (3, 15) | 3 | 4534 | | 13706 | N_2^+ | Meinel (3,0) | 2 | 6853.0 | | 13750 | $^{ m N}_2$ | 1 PG (3,0) | 2 | 6875.2 | | 13789 | O II | $3s'^{2}D_{21/2} - 3p'^{2}F_{31/2}^{0}$ | 3 | 4596.2 | | 13866 | ΝΙ | $2p^{3} {}^{4}S_{1}^{0} {}_{1/2} - 2p^{3} {}^{2}P^{0}$ | 4 | 3466.4 | | 13876 | $^{ m N}_2$ | 2 PG (3,4) | 4 | 3469 | #### APPENDIX III (Cont'd) | $n \lambda (\mathring{A})$ | | Identification | Order | <u>λ</u> (Å) | |----------------------------|---------------------|---|-------|--------------| | 13892 | N II | $3s {}^{3}P_{2}^{0} - 3p {}^{3}P_{2}$ | 3 | 4630.5 | | 13917 | O II | $3s^{4}P_{1/2} - 3p^{4}D_{1}^{0}$ | 3 | 4638.9 | | 13925 | O II | $3s^{4}P_{1\ 1/2} - 3p^{4}D_{2\ 1/2}^{o}$ | 3 | 4641.8 | | 13947 | O II | $3s {}^{4}P_{2 1/2} {}^{3p} {}^{4}D_{3 1/2}^{o}$ | 3 | 4649.1 | | 13952 | O II | $3s^{4}P_{1/2} - 3p^{4}D_{1/2}^{o}$ | 3 | 4650.8 | | 13955 | $^{\mathrm{N_2}}^+$ | 1 NG (1 3) | 3 | 4651.8 |